2016, Number 3
<< Back Next >>
Rev Educ Bioquimica 2016; 35 (3)
La paradoja del uso de antioxidantes durante el tratamiento contra el cáncer: ¿proteger al organismo de los efectos tóxicos de los antineoplásicos disminuiría la eficacia farmacológica para evitar el desarrollo del cáncer?
Guerrero ML, Maldonado VM, Calderón SJV
Language: Spanish
References: 67
Page: 71-88
PDF size: 435.46 Kb.
ABSTRACT
Cancer is a disease that involves the transformation of normal cells to neoplastic
cells. The hallmarks of neoplastic cells are rapid cell proliferation and uncontrolled
cell growth. Antineoplastic drugs used in cancer treatment induce apoptosis in
neoplastic cells; however they are not specific for neoplastic cells and cause toxic
effects in non-neoplastic cells. Oxidative damage maybe induced by antineoplastic
treatment, this damage could be involved in the toxicity of treatment, so antioxidants
use have been proposed to reduce this toxicity. However antioxidant could
decrease pharmacological effect of the antineoplastic because oxidative stress might
participate in the mechanisms of action of antineoplastic. In this review we discute
about a) antioneoplastic action mechanisms, b) involvement of oxidative stress in
apoptosis induced by treatment, c) oxidative damage generated by antineoplastic
treatment, and d) antioxidants co-treatment to reduce oxidative damage without
inhibit antineoplastic-induced apoptosis.
REFERENCES
Almendro V, Marusyk A y Polyak K (2013) Cellular Heterogeneity and Molecular Evolution in Cancer. Annu. Rev. Pathol. Mech. Dis. 8:277-302
Priestman T (2012) Cancer Chemotherapy in Clinical Practice, Second Edition. Springer- Verlag, London, UK, pp 2-42.
Nowel P (1976) The clonal evolution of tumor cell population. Science, 194: 23–28.
Hanahan D. y Weinberg R. (2011) Hallmarks of cancer: The next generation. Cell, 144: 646- 674.
Dy GK. y Adjei AA (2006) Principles of Chemotherapy. En Oncology: An evidencebased approach. Editor Chang A. Springer U.K. pp 14-40.
Burchman PC (2004) An Introduction to Toxicology. Springer, UK. pp 29-50.
Weij NI, Cleton FJ y Osanto S (1997) Free radicals and antioxidants in chemotherapyinduced toxicity. Cancer Treatment Review 23:209-240.
Aktipis CA, Boddy AM, Gatenby RA, Brown JS y Maley CC (2013) Life history trade-offs in cancer evolution. Nature Rev. Cancer 13:883- 892.
Hickman JA (1992) Apoptosis induced by anticancer drugs. Cancer and Metastasis Reviews 11:121-139.
Simöes AP, Olie R, Gautschi O, Leech SH, Häner R, Hall J, Fabbro D, Stahel RA y Zangemeister- Wittke U (2000). bcl-xL antisense treatment induces apoptosis in breast carcinoma cells. Int. J. Cancer (87):582-590.
Chakraborty S, Mazumdar M, Mukherjee S, Bhattacharjee P, Adhikary A, Manna A, Chakraborty S, Khan P, Sen A, y Das T (2014) Restoration of p53/miR-34a regulatory axis decreases survival advantage and ensure Bax-dependent apoptosis of non-smal cell lung carcnoma cells. FEBS Letters (588):549-559.
Marzo I y Naval J (2008) Bcl-2 family members as molecular targets in cancer therapy. Biochemical Pharmacology (76):939-946.
Kim R, Tanabe K, Uchida Y, Emi M, Inoue H y Toge T (2002). Current status of the molecular mechanisms of anticancer drug-induced apoptosis. Cancer Chemother Pharmacol (50):343-352.
De Vos M, Schreiber V, Dantzer F (2012) The diverse roles and clinical relevance of PARPs in DNA damage repair: Current state of art. Biochemical Pharmacology (84):137-146.
Wu P, Zhu X, Jin W, Hao S, Liu Q y Zhang L (2015) Oxaliplatin triggers necrosis as well as apoptosis in gastric cancer SGC-7901 cells. Biochem and Biophys Research Comm (460):183-190.
López-Royuela N, Pérez-Galán P, Galán-Malo P, Yuste VJ, Anel A, Susín SA, Naval J y Marzo I (2010) Different contribution of BH3-only proteins and caspases to doxorubicin-induced apoptosis in p53-deficient leukemia cells. Biochemical Pharmacology (79):1746-1758.
Koceva-Chyta A, Jedrzejczak M, Skierski J, Kania K y Józwiak Z (2005) Mechanisms of induction of apoptosis by anthraquinone anticancer drugs aclarubicin and mitoxantrone in comparison with doxorubicin: Relation to drug cytotoxicity and caspase-3 activation. Apoptosis (10):1497-1514.
Rogalska A, Marczak A (2015) Epothilone B induces human ovarian cancer OV-90 cell apoptosis via external pathway. Environmental Toxicology and Pharmacology (39):700-712.
Johnstone RW, Frew AJ y Smyth MJ (2008) The TRAIL apoptotic pathway in cancer onset progression and therapy. Nature Reviews Cancer (8): 782-798.
Holoch PA y Griffith TS (2009) TNF-related apoptosis-inducing ligand (TRIAL): A new path to anti-cancer therapies. European Journal of Pharmacology (625):63-72.
Wang H, Yang T y Wu X (2015) 5-Fluorouracil preferentially sensitizes mutant KRAS nonsmal cell lung carcinoma cells to TRAILinduced apoptosis. Molecular Oncology (9):1815-1824.
Fry AM, Chresta CM, Davies SM, Walker MC, Harris AL, Hartley JA, Masters JRW y Hickson DI (1991) Relationship between Topoisomerase II Level and Chemosensitivity in Human Tumor Cell Lines. Cancer Research (51):6992-6995.
O`Connor PM, Wassermann K, Sarang M, Magrath I, Bohr VA y Kohn KW (1991) Relationship between DNA Cross-Links, Cell Cycle and Apoptosis in Burkitt`s Lymphoma Cell Lines Differing in Sensitivity to Nitrogen Mustard. Cancer Research (51):6550-6557.
Parris, CN, Walker, MC, Masters JW y Arlett C (1990) Inherent Sensitivity and Induced Resistance to Chemotherapeutic Drugs and Irradiation in Human Cancer Cell Lines: Relationship to Mutation Frequencies. Cancer Research (50):7513-7518. in cisplatin-resistant human bladder cancer cells by modulating glutathione concentrations and glutathione-related enzyme activities. BJU International (95): 1086-1090.
Jianfeg Z, Yan C, Chongyu L, Jianping X, Dongjiao Y, Ping Z y Bianming W (1997) Ara-C induced apoptosis in human myeloid leukemia cell line HL-60: inducing apoptosis is the primary mechanism of chemotherapy. Chinese Journal of Cancer Research (3):183-187.
Seis H (2007) Total Antioxidant Capacity: Appraisal of a concept. The Journal of Nutrition. 137:1493-1495
Halliwell B (1999) Free radicals in biology and medicine. NY, Oxford University Press.
Konigsberg-Fainstein, M (2008) Radicales libres y estrés oxidativo. Aplicaciones médicas. México. Manual Moderno
Forrest V, Kang Y y McClain DE (1994) Oxidative stress-induced apoptosis prevented by trolox. Free Radical Biology & Medicine (16):675-684.
Kagan VE, Borisenko GG, Tyurina YY, Tyurin VA, Jiang J, Potapovich AI, Kini V, Amoscato AA y Fujii Y (1994) Interactions of cytochrome C with cardiolipin and phosphatidylserine. Free Radical Biology & Medicine (37):1963-1985.
Zohu JY, Liu Y y Wu GS (2006) The role of mi togen-act ivated protein kinase phosphatase-1 in oxidative damage-induced cell death. Cancer Res (9):4888-4894
Huot J, Houle F, Spitz DR y Landry J (1996) HSP27 Phosphorylation-mediated resistance against actin fragmentation and cell death induced by oxidative stress. Cancer Res (56):273-279.
Salvensen GS y Dixit V (1997) Caspases: Intracellular signiling by proteolysis. Cell (91):443-446.
Barbouti A, Amorgianiotis C, Kolettas E, Kanavaros P y Galaris D (2007) Hydrogen peroxide inhibits caspase-dependent apoptosis by inactivating procaspase-9 in an irondependent manner. Free Radical Biology & Medicine (43): 1377-1387.
Murata M, Suzuki T, Midorikawa K, Oikawa S y Kawanishi S (2004) Oxidative DNA damage induced by a hydroperoxide derivative of cyclophosphamide. Free Radical Biology & Medicine (6):793-802.
Emadi A, Jones RJ y Brodsky RA (20009) Cyclophosphamide and Cancer: Golden Anniversary. Nature Rev Clin Oncol (6):638- 647.
Saad S, Najjar Tao y Alashari M (2004) Role of non-selective adenosine receptor blockade and phosphodiesterase inhibition in cisplatininduced nephrogonadal toxicity in rats. Clin and Exper Pharm and Phys (31):862-867.
Kalivendi SV, Kotamraju S, Zhao H, Joseph J y Kalyanaraman B (2001) Doxorubicininduced apoptosis is associated with increased transcription of endothelial nitric-oxide synthase. Journal of Biological Chemistry (276):47266-47276.
Doroshow J, Locker G y Myers CE (1980) Enzymatic defenses of the mouse heart against reactive oxygen metabolites. J Clin Invest (65):128-135.
Maeda T, Miyazono Y, Ito K, Hamada K, Sekine S y Horie T (2010) Oxidative stress and enhanced paracellular permeability in the small intestine of methotrexate-treated rats. Cancer Chemother Pharmacol (65):1117- 1123.
Weijl NI, Cleton FJ y Osanto S (1997) Free radicals and antioxidants in chemotherapyinduced toxicity. Cancer Treatment Reviews (23):209-240.
Chen Y, Jungsuwadee P, Vore M, Butterfield DA y St. Clair DK (2007) Collateral damage in cancer chemotherapy: Oxidative stress in nontargeted tissues. Molecular Interventions (3): 147-156.
Sangeetha U, Das N, Koratkar R y Suryaprabha P (1990) Increase in free radical generation and lipid peroxidation following chemotherapy in patients with cancer. Free Radical Biology & Medicine (8):15-19.
Look MP y Musch E (1994). Lipid peroxides in the polychemotherapy of cancer patients. Chemotherapy (40):8-15.
Senthilkumar S, Yogeeta SK, Subashini R y Devaki T (2006) Atteniation of cyclophosphamide induced toxicity by squaleno in experimental rats. Chemico-Biological Interactions (160):252-260.
Atessahin A, Yilmaz S, Karahan I, Ceribasi AO y Karaoglu A (2005) Effects of lycopene aainst cisplatin-induced ephrotoxicity ad oxidative stress in rats. Toxicology (212):16-123.
Itoh T, Terazawa R, Kojima K, Nakane K, Deguchi T, Ando M, Tsukamasa Y, Ito M y Nozawa Y (2010) Cisplatin induces production of recative oxygen species via NADPH oxidase activation in human prostate cancer cell. Free Radical Research (9):1033-1039.
Brozovic A, Ambriovic-Ristov A y Osmak M (2010) The relationship between cisplatininduced reactive oxygen species, glutathione, and BCL-2 and resistance to cisplatin. Critical Reviews in Toxicology (40):347-359.
Byun SS, Kim SW, Choi H, Lee C y Lee E (2005). Augmentation of cisplatin sensibility 88 Guerrero MedranoL, Maldonado Vega M y Calderón Salinas
Suzuki H y Sugimaya Y (1998) Excretion of GSSG and glutathione conjugates mediated by MRP1 and cMOAT/MRP2. Seminars in Liver Disease (18):359-375.
Steward DJ (2010). Tumor and host factors that may limit efficacy of chemotherapy in non-samll cell and small cell lung cancer. Critical Reviews in Oncology/Hematology (75):173-234.
Van der Zee AGJ, Van Ommen B, Meijer C, Hollema H, van Bladeren PJ y de Vries EGE (1992). Glutathione S-transferase activity and isoenzyme composition in bening ovarian tumours, untreated malingnant ovarian tumors, and malignant ovarian tumours after platinum/cyclophosphamide chemotherapy. Br. J. Cancer (6):930-936.
Chen HH y Kuo MT (2010). Role of glutathione in the regulation of cisplatin resistance in cancer chemotherapy. Metal-Based Drug. 43 0939. doi:10.1155/2010/430939
Hanigan M, Gallagher BC, Towsend DM y Gabarra V (1999) g-glutamyl transpeptidase accelerates tumor growth and increases the resistance of tumors to cisplatin in vivo. Carcinogenesis (20):553–559.
Franzini M, Corti A, Lorenzini E, Paolicchi A, Pompella A, De Cesare M, Perego P, Gatti L, Leone R, apostoli P y Zunino F (2006) Modulation of cell growth and cisplatin sensitivity by membrane g-glutamyltransferase in melanoma cells. European Journal of Cancer (42):2623-2630.
Meredith M, Cusik C, Soltaninassab, Sekhar K, Lu S y Freeman ML (1998) Expression of Bcl-2 increases intracellular glutathione by inhibitong methionine-dependent GSH efflux. Biochemical and Biophysical Research Comm (248):458-463.
Voehringer DW (1998) BCL-2 and glutathione: alterations in cellular redox state that regulate apoptosis sensitivity. Free Radical & Medicine (27):945-950.
Lee M, Hyun DH, Marshall KA, Ellerby LM, Bredesen DE, Jenner P y Halliwell B (2001) Effect of overexpresion of BCL-2 on cellular oxidative damage, nitric oxide production, antioxidant defenses, and the proteasome. Free Radical Biology & Medicine (31):1550- 1559.
Chernobennel-Lasserre C y Dosanjh MK (1997) Suppression of apoptosis by overexpression of Bcl-2 or Bcl-XL promotes survival and mutagenesis after oxidative damage. Biocimie (79):613-617.
Oldham E, Liu J, Albitar M, Keating MJ y Huang P (2004) Intrinsic oxidative stress in cancer cells: a bioquemical basis for the therapeutic selectivity. Cancer Chemother Pharmacol (53):209-219.
Keizer HG, Pinedo HM, Schuurhuist GJ y H Joenje (1990). Doxorubicin (adriamycin): a critical review of free radical-dependent mechanism of cytotoxicity. Pharmac. Ther (47):219-231.
Nishikawa M, Tamada A, Hyoudou K, Umeyama Y, Takashashi Y, Kobayashi Y, Kumai H, Ishida E, Staud F, Yabe Y, Takakura Y, Yamashita F, Hashida M (2004) Inhibition of experimental hepatic metastasis by targeted delivery of catalase in mice. Clinical & Experimental Metastasis (21):213-221.
Kurkucher CM, Wagner U, Kolster B, Andreotti PE, Krebs D y Bruckner HW (1996). Ascorbic acid (vitamin C) improves the antineoplastic activity of doxorubicin, cisplatin and paclitaxel in human breast carcinoma cells in vitro. Cancer Letters (103):183-189.
Ligth BW, Yu WD, McElwain MC, Russell DM, Trump DL y Johnson CS (1997). Potentiation of cisplatin antitumor activity using a vitamin D analogue in a murine squamous cell carcinoma model system. Cancer Res. (57):3759-3759.
Qin XJ, He W, Hai CX, Liang X y Liu R (2008) Protection of multiple antioxidants Chinese herbal medicine on the oxidative stress induced by adriamycin chemotherapy. Journal of Applied Toxicology (28):271-282.
Shimpo K, Nagatsu T, Yamada K, Sato T, Niimi H, Shamoto M, Takeuchi T, Umezawa H y Fujita K (1991) Ascorbic acid and adriamycin toxicity. American J Clin Nutr. (54):1298S-1301S.
Block K.I, Koch A.C, Mead M.N, Tothy P.K, Newman R.A y Gyllenhaal C (2007) Impact of antioxidant supplement on chemotherapeutic efficacy: A systematic review of the evidence from randomized controlled trials. Cancer Treatment Reviews (33):407-418.