2017, Number 1
<< Back Next >>
Rev Cubana Invest Bioméd 2017; 36 (1)
In vitro drug release from acrylic bone cements intended for prosthetic replacement
Morejón AL, Cabrera GAD, Durán RI, Brizuela GN, Delgado García-Menocal JÁ, Fuentes EG, Ledea LOE, Mendizábal ME
Language: Spanish
References: 21
Page: 1-9
PDF size: 211.76 Kb.
ABSTRACT
Introduction: Drug carrying acrylic bone cements are currently used for the local
treatment of deep muskuloskeletal infection. However, a clear definition has not been
achieved about which are the best antibiotics to combine with the cements and what
differences may be found between their release profiles.
Objective: Study the long-term release (three months) from acrylic matrices of
different active principles with antibacterial action: ciprofloxacin, cefalexin,
ceftriaxone, meropenem, cefazolin and ceftazidime.
Methods: Drug release follow-up was based on ultraviolet-visible spectroscopy. The
drugs were combined with the cement at doses of 1.25 g per 40 g cement bag. This
concentration interval (1-2 g) is recommended for prosthesis fixation when
replacement is performed due to infection antecedents.
Results: Results revealed that in all cases release is sustained at 90 days (three
months) and does not exceed 20 % of the total drug contained in the matrices.
Release profiles indicate that release may go on for longer periods. Ceftazidime and
cefazolin are released faster in the first hours; ceftriaxone has a medium release rate;
and meropenem, ciprofloxacin and cefalexin have a slower kinetics than the other
formulations assayed. High drug concentrations ranging between 100 and 500 g/ml
are detected during the first 24 hours, exceeding the Minimum Inhibitory
Concentrations reported for some drugs used to combat germs commonly found in
septic prostheses, whereas by the seventh day only about 10 g/ml are released in all
samples. Long-term release remains at much lower concentrations.
Conclusions: An evaluation was conducted of the release profiles of several drugs
and a proposal is presented for new combinations thereof.
REFERENCES
Charnley J. Anchorange of the femoral head prosthesis of the shaft of the femur. J. of Bone Joint Surgery. 1960;42:28-30.
Magnan B, Bondi M, Maluta T, Samaila E, Schirru L, Dall'Oca C, et al. Acrylic bone cement: current concept review. Musculoskelet Surg. 2013;97:93-100.
Lara J, Irribarra L, Mardones R. Diagnóstico y manejo de la artroplastia de cadera infectada. Rev Chil Infec. 2000;17(12):92-100.
Freddy R, Teske V. Uso prolongado de espaciador en infección de cadera. Nueva modalidad de tratamiento en dos tiempos. Rev Méd Urug. 2012;28(1):13-20.
Villanueva-Martínez M, Ríos Luna A, Pereiro J, Fahandez-Saddi H, Villamor A. Hand made articulating spacers in two stage revision for infected total knee arthroplasty: good outcome in 30 patients. Acta Orthop. 2008;79(5):674-82.
Caro I. Cementos óseos con antibiótico. Panorama Actual del Medicamento. 2016;40(394):634-8.
Nelson C.L. The current status of material used for depot delivery of drugs. Clin. Orthop. Relat. 2004;427:72-8.
Bistolfi A, Massazza G, Verné E, Massč A, Deledda D, Ferraris S, et al. Antibiotic-loaded cement in orthopedic surgery: a review. ISRN Orthop. 2011;:290851. doi: 10.5402/2011/290851
Webb JC, Spencer RF. The role of polymethylmethacrylate bone cement in modern orthopaedic surgery. J Bone Joint Surg Br. 2007;89(7):851-7.
Soares D, Leite P, Barreira P, Aido R, Sousa R. Antibiotic-loaded bone cement in total joint arthroplasty. Act Orthop Belg. 2015;81:184-90.
Brien WW, Salvati EA, Klein R, Brause B, Stern S. Antibiotic impregnated bone cement in total hip arthroplasty. An in vivo comparison of the elution properties of tobramycin and vancomycin. Clin. Orthop. Relat. 1993;296:242-8.
Cerretani D, Giorgi G, Fornara P, Bocchi L, Neri L, Ceffa R, et al. The in vitro elution characteristics of vancomycin combined with imipenem cilastatin in acrylic bone cements: a pharmacokinetic study. J. Arthroplasty. 2002;17(5):619-26.
Samuel S, Mathew BS, Veeraraghavan B, Fleming DH, Chittaranjan SB, Prakash JA, et al. In vitro study of elution kinetics and bio-activity of meropenem-loaded acrylic bone cement. J Orthopaed Traumatol. 2012;13:131-6.
Salehi A, Gladius L, Cox Parker A, Haggard WO. Modeling of Daptomycin Release from Medium-Dose Daptomycin-Xylitol-Loaded PMMA Bone Cements. J. Biomedical Science and Engineering. 2014;7:351-60.
Slane J, Vivanco J, Rose W, Ploeg H, Squire M. Mechanical, material, and antimicrobial properties of acrylic bone cement impregnated with silver nanoparticles. Materials Science and Engineering C. 2015;48:188-96.
Lalremruata R. Prosthetic joint infection: A microbiological review. J Med Soc. 2015;29:120-8.
Jasso C, Morejón L, Mendizábal E. Bone Cements (Acrylics). Encyclopedia of Biomedical Polymers and Polymeric Biomaterials. Ed. Taylor & Francis Group. 2015;1025-52.
Anagnostakos K, Kelm J. Enhancement of antibiotic elution from acrylic bone cement. J Biomed Mater Res - Part B Appl Biomater. 2009;90 B: 467-75.
Salas JL, Herrera ML, Guevara J, Lizano C. Sensibilidadin vitro de Staphylococcus sppa la Ceftazidima. Costa Rica: Méd. Hosp .Nal. Nińos. 1987;1(22):41-4.
Ruiz JD, Ramírez NF, Arroyave O. Determinación de concentraciones inhibitorias mínimas a algunosantibióticos de las bacterias aisladas de glándula mamaria bovina en San Pedro de los Milagros, Antioquia: Col. Cienc. Pec. 2001;14:2.
Barth RE, Vogely HC, Hoepelman AI, Peters EJ. 'To bead or not to bead?' Treatment of osteomyelitis and prosthetic joint-associated infections with gentamicin bead chains. Int J Antimicrob Agents. 2011;38:371-5.