2017, Number 1
Next >>
Rev Cubana Invest Bioméd 2017; 36 (1)
Design of customized scaffolds for regeneration of a small sized mandible
León UJ, López CA, González RJE, Pérez RYV, Ríos MR
Language: Spanish
References: 21
Page: 1-21
PDF size: 294.01 Kb.
ABSTRACT
Introduction: Various studies have reported the use of three-dimensional structures
known as scaffolds as stem cell supports. These devices act as extracellular matrix
substitutes, and in some cases may additionally control the mechanical stimuli
received by cells. They also facilitate cell adhesion, differentiation and proliferation.
Objective: Based on the processing of medical images, design customized scaffolds
to guide the bone regeneration of a small sized mandible.
Methods: The Computed Axial Tomography images of a patient's head used in the
study were obtained from the Cuban Neuroscience Center. The images were
processed with the software Mimics Innovation Suite 10.01, and the scaffolds were
designed with the software Autodesk Inventor 2016.
Results: By digitally processing the medical images, a three-dimensional segment
was obtained of an atrophied mandible. Additionally, five scaffolds were designed to
re-establish the dimensions of that mandibular segment with various pore or porosity
architectures: two circular (diameter 250 and 500 µm), two square (sides 200 and
300 µm) and one hexagonal (sides 250 µm).
Conclusions: The greatest volume occupied by pores was found in the scaffold
variant with circular pore architecture and 500 μm in diameter, whereas the smallest
value for this parameter was found in the variant with circular architecture and 250
μm in diameter. It was also shown that the scaffolds designed may be used to reestablish
the dimensions of the study mandibular segment.
REFERENCES
Vanegas JC, Stella N, Garzón DA. Mecanobiología de la interfase hueso-implante dental. Rev Cubana de Estomatología. 2010;47(1):14-36.
Liu Y, Lim J, Teoh S-H. Review: development of clinically relevant scaffolds for vascularised bone tissue engineering. Biotechnology advances. 2013;31(5):688-705.
Susmita Bose, Mangal Roy, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnology. 2012;30(10):546-54.
Cox SC, Thornby JA, Gibbons GJ, Williams MA, Mallick KK. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mater Sci Eng: C. 2015;47:237-47.
Navarro DM. Ingeniería tisular como puntal de la medicina regenerativa en estomatología. Rev Cubana de Estomatología. 2014;51(3):368-89.
Gauvin R, Chen Y-C, Lee JW, Soman P, Zorlutuna P, Nichol JW, et al. Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials. 2012;33(15):3824-34.
Lacroix D, Olivares AL. Análisis por elementos finitos de andamios 3D con arquitectura regular para ingeniería de tejidos. 2013:11-28.
Velasco MA, Garzón DA. Implantes Scaffolds para regeneración ósea. Materiales, técnicas y modelado mediante sistemas de reacción-difusión. Rev Cubana de Investigaciones Biomédicas. 2010;29(1):140-54.
Stoppato M, Carletti E, Sidarovich V, Quattrone A, Unger RE, Kirkpatrick CJ, et al. Influence of scaffold pore size on collagen I development: A new in vitro evaluation perspective. J Bioact Compat Pol. 2013;28(1):16-32.
Ding R, Wu Z, Qiu G, Wu G, Wang H, Su X, et al. Selective Laser Sintering- Produced porous titanium alloy scaffold for bone tissue engineering. Zhonghua yi xue za zhi. 2014;94(19):1499-502.
Szymczyk P, Junka A, Ziółkowski G, Smutnicka D, Bartoszewicz M, Chlebus E, et al. The ability of S. aureus to form biofilm on the Ti-6Al-7Nb scaffolds produced by Selective Laser Melting and subjected to the different types of surface modifications. Acta Bioeng Biomech. 2013;15(1):41-52.
Yu P, Lu F, Zhu W, Wang D, Zhu X, Tan G, et al. Bio-inspired citrate functionalized apatite coating on rapid prototyped titanium scaffold. Appl Surf Sci. 2014;313:947-53.
Subia B, Kundu J, Kundu SC. Biomaterial scaffold fabrication techniques for potential tissue engineering applications. Indian Inst Tec. 2013:140-57.
Cobos MR, Ricardo JH, Samper EH, Camargo LM. Healing and Bone Regeneration of the Jaws Cystectomy Post: Case Report and Literature Review. Univ Odontol. 2011;30(65):71-8.
Santos RG. Las tecnologías de prototipado rápido en la cirugía. Rev Cubana de Estomatología. 2013;50(3):331-8.
Ryan GE, Pandit AS, Apatsidis DP. Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique. Biomaterials. 2008;29(27):3625-35.
Yavari SA, Wauthlé R, Böttger AJ, Schrooten J, Weinans H, Zadpoor AA, et al. Crystal structure and nanotopographical features on the surface of heat-treated and anodized porous titanium biomaterials produced using selective laser melting. Appl Surf Sci. 2014;290:287-94.
Xiao M, Yang Y, Su X, Di W, Luo Z. Topology optimization of microstructure and selective laser melting fabrication for metallic biomaterial scaffolds. T Nonferr Metal Soc. 2012;22(10):2554-61.
Van der Stok J, Van der Jagt OP, Amin Yavari S, De Haas MF, Waarsing JH, Jahr H, et al. Selective laser melting‐produced porous titanium scaffolds regenerate bone in critical size cortical bone defects. Indian J Orthop. 2013;31(5):792-9.
Chulvi V, Muñoz C. Prototipado rápido + Peek = Andamios para huesos. XI Congreso Internacional de Ingeniería de Proyectos; 2007. p. 603-9.
Lu T, Li Y, Chen T. Techniques for fabrication and construction of threedimensional scaffolds for tissue engineering. Int J Nanomed. 2013;8:337.