2017, Number 4
<< Back Next >>
Gac Med Mex 2017; 153 (4)
El papel del ácido gamma-aminobutírico en la depresión de la mujer
Flores-Ramos M, Salinas M, Carvajal-Lohr A, Rodríguez-Bores L
Language: Spanish
References: 94
Page: 488-497
PDF size: 222.95 Kb.
ABSTRACT
Depression is a common psychiatric disorder and a leading cause of disability worldwide. Multiple and diverse factors are
involved in its cause although biologic factors are prominent. The present study reviews the evidence about the role that
gamma-aminobutyric acid plays in the complex pathogenesis of depression, particularly in women. The implication of gamma-
aminobutyric acid (GABA) is based mainly from animal models whereas clinical studies in depressed patients show alterations
of GABA levels in plasma and cerebrospinal fluid. Neuroimaging studies using spectroscopy indicate also decreased
GABA levels in different brain areas which in turn may normalize after antidepressant therapy, and these findings translate
into clinical response. It has been observed that depression has a higher prevalence among women which suggests a link
between depression and hormonal changes. Similarly, gonadal hormones have a regulatory effect on the hypothalamic–pituitary–
adrenal axis through GABA receptors making women more vulnerable to suffer stress and depression. Therefore, the
implication of GABA in the neurobiology of depression should be explored in order to search for new therapeutic strategies.
REFERENCES
Nota informativa. Febrero de 2017. Disponible en: http://www.who.int/ mediacentre/factsheets/fs369/es
Saveanu RV, Nemeroff CB. Etiology of depression: genetic and environmental factors. Psychiatr Clin North Am. 2012;35:51-71.
Werner FM, Covenas R. Classical neurotransmitters and neuropeptides involved in major depression: a review. Int J Neurosci. 2010;120:455-70.
Zachmann M, Tocci P, Nyhan WL. The occurrence of gamma-aminobutyric acid in human tissues other than brain. J Biol Chem. 1966;241:1355-8.
Xu G, Broadbelt KG, Haynes RL, et al. Late development of the GABAergic system in the human cerebral cortex and white matter. J Neuropathol Exp Neurol. 2011;70:841-58.
Otsuka M, Iversen LL, Hall ZW, et al. Release of gamma-aminobutyric acid from inhibitory nerves of lobster. Proc Natl Acad Sci U S A. 1966;56:1110-5.
Meldrum B. Pharmacology of GABA. Clin Neuropharmacol. 1982;5:293-316.
Guidotti A, Corda MG, Wise BC, et al. GABAergic synapses. Supramolecular organization and biochemical regulation. Neuropharmacology. 1983;22:1471-9.
Brambilla P, Perez J, Barale F, et al. GABAergic dysfunction in mood disorders. Mol Psychiatry. 2003;8:721-37.
Peng L, Hertz L, Huang R, et al. Utilization of glutamine and of TCA cycle constituents as precursors for transmitter glutamate and GABA. Dev Neurosci. 1993;15:367-77.
Scimemi A. Structure, function, and plasticity of GABA transporters. Front Cell Neurosci. 2014;8:161.
Schousboe A, Westergaard N, Sonnewald U, et al. Glutamate and glutamine metabolism and compartmentation in astrocytes. Dev Neurosci. 1993;15:359-66.
Erlander MG, Tillakaratne NJ, Feldblum S, et al. Two genes encode distinct glutamate decarboxylases. Neuron. 1991;7:91-100.
Wu C, Sun D. GABA receptors in brain development, function, and injury. Metab Brain Dis. 2015;30:367-79.
Eder M, Rammes G, Zieglgansberger W, et al. GABA(A) and GABA(B) receptors on neocortical neurons are differentially distributed. Eur J Neurosci. 2001;13:1065-9.
Costa E, Auta J, Grayson DR, et al. GABAA receptors and benzodiazepines: a role for dendritic resident subunit mRNAs. Neuropharmacology. 2002;43:925-37.
Kaupmann K, Malitschek B, Schuler V, et al. GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature. 1998;396:683-7.
Kerr DI, Ong J. GABAB receptors. Pharmacol Ther. 1995;67:187-246.
Bettler B, Kaupmann K, Mosbacher J, et al. Molecular structure and physiological functions of GABA(B) receptors. Physiol Rev. 2004;84:835-67.
Kilb W, Kirischuk S, Luhmann HJ. Role of tonic GABAergic currents during pre- and early postnatal rodent development. Front Neural Circuits. 2013;7:139.
Salari AA, Bakhtiari A, Homberg JR. Activation of GABA-A receptors during postnatal brain development increases anxiety- and depression- related behaviors in a time- and dose-dependent manner in adult mice. Eur Neuropsychopharmacol. 2015;25:1260-74.
Hines RM, Davies PA, Moss SJ, et al. Functional regulation of GABAA receptors in nervous system pathologies. Curr Opin Neurobiol. 2012;22:552-8.
Earnheart JC, Schweizer C, Crestani F, et al. GABAergic control of adult hippocampal neurogenesis in relation to behavior indicative of trait anxiety and depression states. J Neurosci. 2007;27:3845-54.
Shen Q, Lal R, Luellen BA, et al. Gamma-aminobutyric acid-type A receptor deficits cause hypothalamic-pituitary-adrenal axis hyperactivity and antidepressant drug sensitivity reminiscent of melancholic forms of depression. Biol Psychiatry. 2010;68:512-20.
Romeo E, Strohle A, Spalletta G, et al. Effects of antidepressant treatment on neuroactive steroids in major depression. Am J Psychiatry. 1998;155:910-3.
Yee BK, Keist R, von Boehmer L, et al. A schizophrenia-related sensorimotor deficit links alpha 3-containing GABAA receptors to a dopamine hyperfunction. Proc Natl Acad Sci U S A. 2005;102:17154-9.
Smith KS, Rudolph U. Anxiety and depression: mouse genetics and pharmacological approaches to the role of GABA(A) receptor subtypes. Neuropharmacology. 2012;62:54-62.
Wang JF, Sun X, Chen B, et al. Lamotrigine increases gene expression of GABA-A receptor beta3 subunit in primary cultured rat hippocampus cells. Neuropsychopharmacology. 2002;26:415-21.
Gassmann M, Bettler B. Regulation of neuronal GABA(B) receptor functions by subunit composition. Nat Rev Neurosci. 2012;13:380-94.
Frankowska M, Filip M, Przegalinski E. Effects of GABAB receptor ligands in animal tests of depression and anxiety. Pharmacol Rep. 2007;59:645-55.
Nakagawa Y, Ishima T, Ishibashi Y, et al. Involvement of GABAB receptor systems in experimental depression: baclofen but not bicuculline exacerbates helplessness in rats. Brain Res. 1996;741:240-5.
Heese K, Otten U, Mathivet P, et al. GABA(B) receptor antagonists elevate both mRNA and protein levels of the neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) but not neurotrophin-3 (NT-3) in brain and spinal cord of rats. Neuropharmacology. 2000;39:449-62.
Nibuya M, Morinobu S, Duman RS. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci. 1995;15:7539-47.
Duman RS, Heninger GR, Nestler EJ. A molecular and cellular theory of depression. Arch Gen Psychiatry. 1997;54:597-606.
Bowery NG, Bettler B, Froestl W, et al. International Union of Pharmacology. XXXIII. Mammalian gamma-aminobutyric acid(B) receptors: structure and function. Pharmacol Rev. 2002;54:247-64.
Serrats J, Artigas F, Mengod G, et al. GABAB receptor mRNA in the raphe nuclei: co-expression with serotonin transporter and glutamic acid decarboxylase. J Neurochem. 2003;84:743-52.
Cryan JF, Kaupmann K. Don’t worry ‘B’ happy!: a role for GABA(B) receptors in anxiety and depression. Trends Pharmacol Sci. 2005;26:36- 43.
Bowery NG, Hudson AL, Price GW. GABAA and GABAB receptor site distribution in the rat central nervous system. Neuroscience. 1987;20:365- 83.
Monteleone P, Maj M, Iovino M, et al. GABA, depression and the mechanism of action of antidepressant drugs: a neuroendocrine approach. J Affect Disord. 1990;20:1-5.
Emrich HM, von Zerssen D, Kissling W, et al. Effect of sodium valproate on mania. The GABA-hypothesis of affective disorders. Arch Psychiatr Nervenkr (1970). 1980;229:1-16.
Gold BI, Bowers MB Jr, Roth RH, et al. GABA levels in CSF of patients with psychiatric disorders. Am J Psychiatry. 1980;137:362-4.
Mann JJ, Oquendo MA, Watson KT, et al. Anxiety in major depression and cerebrospinal fluid free gamma-aminobutyric acid. Depress Anxiety. 2014;31:814-21.
Lu YR, Fu XY, Shi LG, et al. Decreased plasma neuroactive amino acids and increased nitric oxide levels in melancholic major depressive disorder. BMC Psychiatry. 2014;14:123.
van Marwijk H, Allick G, Wegman F, et al. Alprazolam for depression. Cochrane Database Syst Rev. 2012;(7):CD007139.
Schatzberg AF, Cole JO. Benzodiazepines in depressive disorders. Arch Gen Psychiatry. 1978;35:1359-65.
Petty F, Trivedi MH, Fulton M, et al. Benzodiazepines as antidepressants: does GABA play a role in depression? Biol Psychiatry. 1995;38:578-91.
Kucukibrahimoglu E, Saygin MZ, Caliskan M, et al. The change in plasma GABA, glutamine and glutamate levels in fluoxetine- or S-citalopram- treated female patients with major depression. Eur J Clin Pharmacol. 2009;65:571-7.
Sanacora G, Mason GF, Rothman DL, et al. Increased occipital cortex GABA concentrations in depressed patients after therapy with selective serotonin reuptake inhibitors. Am J Psychiatry. 2002;159:663-5.
Price RB, Shungu DC, Mao X, et al. Amino acid neurotransmitters assessed by proton magnetic resonance spectroscopy: relationship to treatment resistance in major depressive disorder. Biol Psychiatry. 2009;65:792-800.
Pehrson AL, Sanchez C. Altered gamma-aminobutyric acid neurotransmission in major depressive disorder: a critical review of the supporting evidence and the influence of serotonergic antidepressants. Drug Des Devel Ther. 2015;9:603-24.
Hasler G, van der Veen JW, Tumonis T, et al. Reduced prefrontal glutamate/ glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatry. 2007;64:193-200.
Drevets WC. Functional neuroimaging studies of depression: the anatomy of melancholia. Annu Rev Med. 1998;49:341-61.
Sanacora G, Mason GF, Rothman DL, et al. Increased cortical GABA concentrations in depressed patients receiving ECT. Am J Psychiatry. 2003;160:577-9.
Bhagwagar Z, Wylezinska M, Jezzard P, et al. Low GABA concentrations in occipital cortex and anterior cingulate cortex in medication-free, recovered depressed patients. Int J Neuropsychopharmacol. 2008;11:255-60.
Rajkowska G, O’Dwyer G, Teleki Z, et al. GABAergic neurons immunoreactive for calcium binding proteins are reduced in the prefrontal cortex in major depression. Neuropsychopharmacology. 2007;32:471-82.
Kessler RC, Ustün TB. The World Mental Health (WMH) Survey Initiative Version of the World Health Organization (WHO) Composite International Diagnostic Interview (CIDI). Int J Methods Psychiatr Res. 2004;13:93-121.
Payne JL, Palmer JT, Joffe H. A reproductive subtype of depression: conceptualizing models and moving toward etiology. Harv Rev Psychiatry. 2009;17:72-86.
Flores-Ramos M. Los trastornos mentales relacionados a la edad reproductiva de la mujer: una nueva propuesta en el campo de la salud mental. Gac Med Mex. 2011;147:33-7.
Flores-Ramos M, Heinze G, Silvestri-Tomassoni R. Association between depressive symptoms and reproductive variables in a group of perimenopausal women attending a menopause clinic in Mexico City. Arch Womens Ment Health. 2010;13:99-105.
Freeman EW, Sammel MD, Lin H, et al. Associations of hormones and menopausal status with depressed mood in women with no history of depression. Arch Gen Psychiatry. 2006;63:375-82.
Ryan J, Burger HG, Szoeke C, et al. A prospective study of the association between endogenous hormones and depressive symptoms in postmenopausal women. Menopause. 2009;16:509-17.
Daly RC, Danaceau MA, Rubinow DR, et al. Concordant restoration of ovarian function and mood in perimenopausal depression. Am J Psychiatry. 2003;160:1842-6.
Bromberger JT, Schott LL, Kravitz HM, et al. Longitudinal change in reproductive hormones and depressive symptoms across the menopausal transition: results from the Study of Women’s Health Across the Nation (SWAN). Arch Gen Psychiatry. 2010;67:598-607.
Flores-Ramos M, Moreno J, Heinze G, et al. Gonadal hormone levels and platelet tryptophan and serotonin concentrations in perimenopausal women with or without depressive symptoms. Gynecol Endocrinol. 2014;30:232-5.
Woods NF, Smith-DiJulio K, Percival DB, et al. Depressed mood during the menopausal transition and early postmenopause: observations from the Seattle Midlife Women’s Health Study. Menopause. 2008;15:223-32.
Schiller CE, Meltzer-Brody S, Rubinow DR. The role of reproductive hormones in postpartum depression. CNS Spectr. 2015;20:48-59.
Ben Dor R, Harsh VL, Fortinsky P, et al. Effects of pharmacologically induced hypogonadism on mood and behavior in healthy young women. Am J Psychiatry. 2013;170:426-33.
Fernandez-Guasti A, Fiedler JL, Herrera L, et al. Sex, stress, and mood disorders: at the intersection of adrenal and gonadal hormones. Horm Metab Res. 2012;44:607-18.
Goel N, Workman JL, Lee TT, et al. Sex differences in the HPA axis. Compr Physiol. 2014;4:1121-55.
Handa RJ, Sharma D, Uht R. A role for the androgen metabolite, 5alpha androstane 3beta, 17beta diol (3beta-diol) in the regulation of the hypothalamo-pituitary-adrenal axis. Front Endocrinol (Lausanne). 2011;2:65.
Handa RJ, Weiser MJ. Gonadal steroid hormones and the hypothalamo- pituitary-adrenal axis. Front Neuroendocrinol. 2014;35:197-220.
Walf AA, Frye CA. Estradiol reduces anxiety- and depression-like behavior of aged female mice. Physiol Behav. 2010;99:169-74.
Estrada-Camarena E, Fernandez-Guasti A, Lopez-Rubalcava C. Antidepressant- like effect of different estrogenic compounds in the forced swimming test. Neuropsychopharmacology. 2003;28:830-8.
Bredemann TM, McMahon LL. 17beta estradiol increases resilience and improves hippocampal synaptic function in helpless ovariectomized rats. Psychoneuroendocrinology. 2014;42:77-88.
Gleason CE, Dowling NM, Wharton W, et al. Effects of hormone therapy on cognition and mood in recently postmenopausal women: findings from the randomized, controlled KEEPS-cognitive and affective study. PLoS Med. 2015;12:e1001833.
Halbreich U, Kahn LS. Role of estrogen in the aetiology and treatment of mood disorders. CNS Drugs. 2001;15:797-817.
Schmidt PJ, Nieman L, Danaceau MA, et al. Estrogen replacement in perimenopause-related depression: a preliminary report. Am J Obstet Gynecol. 2000;183:414-20.
Ben Dor R, Marx CE, Shampine LJ, et al. DHEA metabolism to the neurosteroid androsterone: a possible mechanism of DHEA’s antidepressant action. Psychopharmacology (Berl). 2015;232:3683.
Martinez-Mota L, Contreras CM, Saavedra M. Progesterone reduces immobility in rats forced to swim. Arch Med Res. 1999;30:286-9.
Rodriguez-Landa JF, Contreras CM, Bernal-Morales B, et al. Allopregnanolone reduces immobility in the forced swimming test and increases the firing rate of lateral septal neurons through actions on the GABAA receptor in the rat. J Psychopharmacol. 2007;21:76-84.
Schmidt PJ, Nieman LK, Danaceau MA, et al. Differential behavioral effects of gonadal steroids in women with and in those without premenstrual syndrome. N Engl J Med. 1998;338:209-16.
Smith MJ, Adams LF, Schmidt PJ, et al. Abnormal luteal phase excitability of the motor cortex in women with premenstrual syndrome. Biol Psychiatry. 2003;54:757-62.
de Souza LM, Franci CR. Differential immunoreactivity of glucocorticoid receptor and GABA in GABAergic afferents to parvocellular neurons in the paraventricular nucleus. Neurosci Lett. 2013;534:199-204.
Gordon JL, Girdler SS, Meltzer-Brody SE, et al. Ovarian hormone fluctuation, neurosteroids, and HPA axis dysregulation in perimenopausal depression: a novel heuristic model. Am J Psychiatry. 2015;172:227-36.
Vigod SN, Strasburg K, Daskalakis ZJ, et al. Systematic review of gamma- aminobutyric-acid inhibitory deficits across the reproductive life cycle. Arch Womens Ment Health. 2014;17:87-95.
Mohler H. The GABA system in anxiety and depression and its therapeutic potential. Neuropharmacology. 2012;62:42-53.
Loscher W. Valproate: a reappraisal of its pharmacodynamic properties and mechanisms of action. Prog Neurobiol. 1999;58:31-59.
Davis LL, Kabel D, Patel D, et al. Valproate as an antidepressant in major depressive disorder. Psychopharmacol Bull. 1996;32:647-52.
Corrigan FM. Sodium valproate augmentation of fluoxetine or fluvoxamine effects. Biol Psychiatry. 1992;31:1178-9.
Zarate CA Jr, Tohen M, Baraibar G. Combined valproate or carbamazepine and electroconvulsive therapy. Ann Clin Psychiatry. 1997;9:19-25.
Ghabrash MF, Comai S, Tabaka J, et al. Valproate augmentation in a subgroup of patients with treatment-resistant unipolar depression. World J Biol Psychiatry. 2016;17:165-70.
Dubin MJ, Mao X, Banerjee S, et al. Elevated prefrontal cortex GABA in patients with major depressive disorder after TMS treatment measured with proton magnetic resonance spectroscopy. J Psychiatry Neurosci. 2016;41:150223.
Licata SC, Jensen JE, Conn NA, et al. Zolpidem increases GABA in depressed volunteers maintained on SSRIs. Psychiatry Res. 2014;224:28-33.
Zorumski CF, Paul SM, Izumi Y, et al. Neurosteroids, stress and depression: potential therapeutic opportunities. Neurosci Biobehav Rev. 2013;37:109-22.