2016, Number 2
<< Back Next >>
Rev Mex Ing Biomed 2016; 37 (2)
Desarrollo de un simulador de los experimentos clásicos y actualizados de fijación de voltaje de Hodgkin y Huxley
Reyes-Lazalde A, Reyes-Monreal M, Pérez-Bonilla ME
Language: Spanish
References: 30
Page: 135-148
PDF size: 1281.73 Kb.
ABSTRACT
Hodgkin and Huxley ́s works were the starting point to generating mathematical models for explain, reproducethe experimental results and predict the behavior of voltage-sensitive ion channels in the axon. The high costs ofthese experiments avoid its implementation in teaching degree. An educational alternative is virtual experimentsusing computer simulations. In this work the development of a simulator that reproduces step by step the classicexperiments of Hodgkin and Huxley on the conductance of voltage-dependent channels in squid giant axon ispresented. The simulator was developed in Visual Basic language, ver 5.0 for Windows environment. It consistsof four modules: (1) ionic currents simulation; (2) classical Hodgkin and Huxley ́s experiments; (3) current versionmodel; (4) action potentials. It comprises connecting interface screens that allow simulate and compute the valuesof the variables associated with the channel conductance. The user can perform an unlimited number of virtualexperiments that will facilitate the understanding of the subject.
REFERENCES
Curran J, Mohler PJ. “Alternativeparadigms for ion channelopathies:Disorders of ion channel membranetrafficking and posttranslationalmodification,”Annu. Rev. Physiol.(online), vol. 77, pp. 9.1-9.20, 2015.DOI: 10.1146/annurev-physiol-021014-071838.
Kullmann DM. “Neurological channel-opathies,”Ann. Rev. Neurosci.,vol. 33, pp. 151-172, 2010. DOI:10.1146/annurev-neuro-060909-153122.
Av-Ron E, Byrne JH, BaxterDA. “Teaching basic principlesof neuroscience with computersimulations,”JUNE, vol. 4 no. 2, pp.A40-A52, 2006.
Demir SS. “An quantitative electro-physiology training resource forsimulation-basedteachingandlearning,”Conf. Proc. IEEE Eng.Med.Biol.Soc.IEEE, vol.7, pp.5169-5171, 2004.DOI:10.1109/IEMBS.2004.1404439.
Qing-li Q. “Electrophysiology coursewith quantitative method,”ITIME,vol. 1, pp. 706-710, 2009. DOI:10.1109/ITIME.2009.5236332.
Alegría-Baños JA, Álvares-Romo E,Arredondo-Mendoza G, et al.Manualde prácticas de laboratorio de fisiología.2011-2012.[revisado 25/08/2015] http://www.facmed.unam.mx/fm/pa/2010/practicas/practicas_fisiologia.pdf
Gerstner W, Sprekeler H, DecoG. “Theory and simulation inneuroscience,”Science, vol.338,pp.60-65, 2012.DOI:10.1126/science.1227356.
Hernández OE, Zurek EE. “Teachingand learning the Hodgkin-Huxleymodel based on software developedin NEURON’s programming languagehoc,”BMC Med. Educ, vol. 13, no. 70pp. 1-9, 2013. DOI: 10.1186/1472-6920-13-70.
Carnevale NT, Hines ML.The neuronbook. New York, NY: CambridgeUniversity Press, 2006.
Ribaric S, Kordas M. “Teachingcardiovascularphysiologywithequivalent electronic circuits in apractically oriented teaching module,”Adv. Physiol. Educ, vol. 35,pp.149-160, 2011.DOI:10.1152/advan.00072.2010.
Bower JM, Beeman D.The book ofGENESIS. 2nd Ed, TELOS Springer-Verlag (New York), 1998.
Hodgkin A, Huxley A. “Currents carriedby sodium and potassium ions,”J.Physiol, vol. 116, pp. 449-472, 1952a.DOI: 10.1113/jphysiol.1952.sp004717
Hodgkin A, Huxley A. “Thecomponents of membrane conductancein the giant axon of Loligo,”J. Physiol,vol. 116, pp. 473-496, 1952b. DOI:10.1113/jphysiol.1952.sp004718
Hodgkin A, Huxley A. “The dualeffect of membrane potential onsodium conductance in the giantaxon of Loligo,”J. Physiol, vol.116, pp. 497-506, 1952c. DOI:10.1113/jphysiol.1952.sp004719
Hodgkin A, Huxley A. “Quantitativedescription of membrane current andits application to conduction andexcitation in nerve,”J. Physiol, vol.117, pp. 500-544, 1952d. DOI:10.1113/jphysiol.1952.sp004764
Johnston D, Wu MS.Foundations ofcellular neurophysiology, MIT PressCambridge (Massachusetts), 1995.
DewhurstD.“Computer-basedalternatives in higher education: past,present and future,”ALTEX, vol. 23,no. 3/06, pp. 197-201, 2006.
Race P.The Open Learning Handbook.Kogan Page (London), 1994.
Heerman DW, Fuhrmann TT.“Teaching physics in the virtualuniversity: the mechanics toolkit,”Comput. Phys. Commun, vol. 127,pp. 11-15, 2000. DOI: 10.1016/S0010-4655(00)00033-3.
Clarke K. “The use of microcomputersimulations in undergraduate neuro-physiology experiments,”ATLA, vol.14, pp. 134-140, 1987.
Dewhurst D, Brown GJ, MehanAS. “Microcomputer simulations oflaboratory experiments in physiology,”ATLA, vol. 15, pp. 280-289, 1998.
Leathard HL, Dewhurst D. “Comparisonof the cost-effectiveness of a computerassisted learning program with atutored demonstration to teachintestinal motility to medical students,”Assoc. Learn. Technol, vol. 3, pp. 118-125, 1995.
Hughes IE. “Do computer simulationsof laboratory practicals meet learningneeds?,”Trends. Pharmacol. Sci,vol.22, pp.71-74, 2001.DOI: http://dx.doi.org/10.1016/S0165-6147(00)01605-9.
Gruber FP, Dewhurst D. “Alternativesto animal experimentation inbiomedical education,”ALTEX, vol. 21,Suppl. 1, pp. 33-48, 2004.
Vinardell MP. “Actividades de EURCA(European Resource Center forAlternatives in Higher Education) en eldesarrollo e implantación de métodosalternativos al uso de animales endocencia,”Edusfarm, vol. 2, pp. 1-7,2007.
Abud FM. “MeISE: Metodología deingeniería de software educativo,”Rev.Int. Educ. Ing, vol. 2, no. 1, pp. 1-9,2009.
Dewhurst D. “Is it possible to meetthe learning objectives of undergraduatepharmacology classes with non-animalmodels?,”AATEX, vol. 14, pp. 21-25,2007.
Moore J, Stuart AE. “Neurons in action:computer simulations with NeuroLab,”J. Undergrad. Neurosc. Educ, vol. 2,no. 2, pp. 6-7, 2004.
Reyes Lazalde A, Pérez ME, FuchsOL, Reyes M. “Interactive simulators tostudy the passive properties of the axonand the dendritic tree,”Rev. Mex. Ing.Biomedica, vol. 33, no.1, pp. 29-40,2012.
Cronin J.Mathematical aspectsof Hodgkin-Huxley neural theory.Cambridge University Press (NewYork), 1987.