2017, Number 4
<< Back Next >>
salud publica mex 2017; 59 (4)
Population profiles associated with severe functional difficulties and disability among 5-17 years-old children in México
Braverman-Bronstein A, Barrientos-Gutiérrez T, De Castro F, Lazcano-Ponce E, Rojas-Martínez R, Terán V
Language: English
References: 19
Page: 370-379
PDF size: 233.91 Kb.
ABSTRACT
Objectives. To report the prevalence of severe functional
difficulties and disability (SFD) in a nationally representative
sample of children ages 5 to 17 in Mexico, to identify factors
associated with SFD, and population profiles predictive
of SFD.
Materials and methods. Using data from the
National Survey on Children and Women we estimated
prevalence and 95% confidence intervals of SFD and risk
factors. We fitted bivariate and multivariate logistic regression
models. We then examined which combinations of the
sociodemographic factors best predicted SFD.
Results. The prevalence of SFD was 11.2%. The most prevalent SFD were
on the socioemotional dimension (8.3%). The associated
risk factors in the three dimensions were: living in a poor
household, being a boy, having a mother with basic education
or less, and non-indigenous background or living in an urban
area.
Conclusions. Identifying groups of the population at
higher risk for SFD provides useful information for targeted
intervention implementation.
REFERENCES
The United Nations Children’s Fund (UNICEF). Monitoring Child Disability in Developing Countries : Results from the Multiple Indicator Cluster Surveys [Internet]. New York. 2008 [cited 2016 Oct 24]. p. 84 p. Available from: https://www.unicef.org/protection/Monitoring_Child_Disability_ in_Developing_Countries.pdf
The United Nations Children’s Fund (UNICEF). Promoting the Rights of Children with Disabilities. Florence: UNICEF, 2007 [accessed on October 26, 2016]. Available at: http://www.unicef-irc.org/publications/pdf/digest13- disability.pdf
Jones L, Bellis MA, Wood S, Hughes K, McCoy E, Eckley L, et al. Prevalence and risk of violence against children with disabilities: a systematic review and meta-analysis of observational studies. Lancet 2012;380:899- 907. https://doi.org/10.1016/S0140-6736(12)60692-8
World Health Organization (WHO). Global Burden of disease. Disease and injury regional estimates [Internet. Geneva: WHO, 2011 [accessed on October 23, 2016]. Available at: http://www.who.int/healthinfo/global_burden_ disease/estimates_regional_2000_2011/en/
Instituto Nacional de Estadística y Geografía (INEGI). Encuesta nacional de la dinámica demográfica 2014. Ciudad de México: Consejo Nacional de la Población, 2014.
Instituto Nacional de Estadística y Geografía (INEGI). Estadísticas a propósito del día del niño (30 de abril). Aguascalientes: INEGI, 2015 [accessed on November 3, 2016]. Available at: http://www.inegi.org.mx/saladeprensa/ aproposito/2015/niño0.pdf
Witt WP, Riley AW, Coiro MJ. Childhood functional status, family stressors, and psychosocial adjustment among school-aged children with disabilities in the United States. Arch Pediatr Adolesc Med 2003;157:687- 695. https://doi.org/10.1001/archpedi.157.7.687
Lazcano-Ponce E, Katz G, Rodríguez-Valentín R, Castro F De, Allen- Leigh B, Márquez-Caraveo ME, et al. The intellectual developmental disorders Mexico study : situational diagnosis, burden, genomics and intervention proposal. Salud Publica Mex 2016;58(6)694-707. https://doi. org/10.21149/spm.v58i6.8267
The United Nations Children’s Fund (UNICEF). Multiple Indicator Cluster Survey [Internet]. New York. 2016 [accessed 2016 Dec 4]. Available from: http://mics.unicef.org/
De Castro F, Villalobos A, Rojas R, Allen-Leigh B, Hubert C, Romero M, et al. Bases metodológicas y resultados de la implementación de la Encuesta Nacional de Niños, Niñas y Mujeres en México 2015. Salud Publica Mex 2016;58(6):674-684. https://doi.org/10.21149/spm.v58i6.8192
Patrinos HA, Psacharopoulos G. Socioeconomic and ethnic determinants of age-grade distortion in Bolivian and Guatemalan primary schools. Int J Educ Dev 1996;16(1):3-14. https://doi.org/10.1016/0738- 0593(94)00043-X
Jun X, Long S. Confidence intervals for predicted outcomes in regression models for categorical outcomes. Stata J 2005; 5(4): 537-539.
Mung’ala-Odera V, Newton CRJC. Identifying children with neurological impairment and disability in resource-poor countries. Child Care Health Dev 2007;33(3):249-256. https://doi.org/10.1111/j.1365- 2214.2006.00714.x
The United Nations Children’s Fund (UNICEF), Washington Group on Disability Statistics (WG). Survey module on child functioning and disability. Interview guidelines. New York: UNICEF, 2016.
Boyle C, Boulet S, Schieve L, Cohen R, Blumberg SJ, Yeargin-Allsopp M, et al. Trends in the prevalence of developmental disabilities in US children, 1997-2008. Pediatrics 2011;127(6):1034-1042. https://doi.org/10.1542/ peds.2010-2989
Shahtahmasebi S, Emerson E, Berridge D, Lancaster G. Child disability and the dynamics of family poverty, hardship and financial strain: Evidence from the UK. J Soc Policy 2010;40(4):653-673. https://doi.org/10.1017/ S0047279410000905
Singer GH. Meta-analysis of comparative studies of depression in mothers of children with and without developmental disabilities. American J Ment Retard 2006;111(3):155-169. https://doi.org/10.1352/0895- 8017(2006)111[155:MOCSOD2.0.CO;2
Wachs TD, Black MM, Engle PL. Maternal depression: a global threat to children’s health, development, and behavior and to human rights. Child Dev Perspect 2009;3(1):51-59. https://doi.org/10.1111/j.1750- 8606.2008.00077.x
Emerson E, Blacher J, Einfeld S, Hatton C, Robertson J, Stancliffe RJ. Environmental risk factors associated with the persistence of conduct difficulties in children with intellectual disabilities and autistic spectrum disorders. Res Dev Disabil 2014;35(12):3508-3517. https://doi.org/10.1016/j. ridd.2014.08.039