2017, Number 3
<< Back Next >>
An Med Asoc Med Hosp ABC 2017; 62 (3)
Application of a law based on dynamic systems for the evaluation of cardiac dynamics in 16 hours
Rodríguez VJO, Correa HSC, Prieto BSE, Rojas RJA, Chavarría CT, Palacios BAU, Hurtado CC
Language: Spanish
References: 31
Page: 180-186
PDF size: 379.62 Kb.
ABSTRACT
Background: The formulation of an exponential mathematical law of chaotic dynamic cardiac systems has allowed quantifying the differences between normal cardiac dynamics, dynamics with disease, and in evolutionary stages towards exacerbation.
Objective: To implement the exponential mathematical law as a diagnostic tool of the cardiac dynamics by reducing time to 16 hours, confirming its clinical utility.
Material and methods: A study was performed with 100 electrocardiographic records: 20 belonged to normal subjects and 80 were diagnosed with different types of cardiac pathologies. A theoretical simulation of heart rates was performed in 16 and 21 hours, with the minimum and maximum values of recorded rates, as well as the total beats per hour, to construct the attractor of the cardiac dynamics. Next, the fractal dimension of the attractors generated for the different dynamics was calculated, and their occupation was quantified in the generalized box-counting space. Finally, the physical-mathematical diagnosis was established and compared with the gold standard for both evaluations.
Results: When applying the mathematical law, it was found that the cases that presented some type of pathology had values between 51 and 167 in the Kp grid; for normal cases these values were between 251 and 396. In addition, the statistical analysis showed results of 100 % for specificity and sensitivity; the Kappa coefficient was 1.
Conclusion: It was possible to verify the diagnostic utility of the exponential mathematical law to distinguish diseased cardiac dynamics from normal ones, even when the evaluation time was reduced from 21 to 16 hours.
REFERENCES
Devaney R. A first course in chaotic dynamical systems theory and experiments. Reading Mass: Addison-Wesley; 1992.
Mandelbrot B. The fractal geometry of nature. Freeman. Barcelona: Tusquets Editores, SA; 2000.
Peitgen H, Jurgens H, Saupe D. Limits and self similarity. In: Chaos and fractals: new frontiers of science. New York: Springer-Verlag; 1992. p. 135-182.
Organización Mundial de la Salud. Enfermedades cardiovasculares. Datos y cifras. Centro de Prensa. Disponible en: http://www.who.int/mediacentre/factsheets/fs317/es/index.html [Fecha de consulta 15/04/2016]
OMS-Centro de prensa. Día mundial del corazón: enfermedades cardiovasculares causan 1,9 millones de muertes al año en las Américas. Nota informativa, octubre de 2012. Disponible en: http://www.paho.org/bol/index.php?option=com_content&view=article&id=1514&catid=667:notas-de-prensa [Fecha de consulta 15/04/2016]
Pineda M, Matiz H, Rozo R. Enfermedad coronaria. Bogotá: Editorial Kimpres Limitada; 2002.
Gaziano T, Gaziano M. Global burden of cardiovascular disease. In: Braunwald’s heart disease —a textbook of cardiovascular medicine. 9th ed. Saunders; 2011.
Charria D, Sánchez C. Arritmias y trastornos de conducción. Oficina de Recursos Educacionales-FEPAFEM. [Citado 10 ene 2013] Disponible en: http://www.aibarra.org/Guias/3-2.htm [Fecha de consulta 15/04/2016]
Lombardi F. Chaos theory, heart rate variability, and arrhythmic mortality. Circulation. 2000; 101 (1): 8-10.
Goldberger AL, Amaral LA, Hausdorff JM, Ivanov PCh, Peng CK, Stanley HE. Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci U S A. 2002; 99 Suppl 1: 2466-2472.
Baumert M, Baier V, Voss A. Estimating the complexity of heart rate fluctuations—an approach based on compression entropy. Noise Lett. 2005; 4: L557–L563.
Voss A, Schulz S, Schroeder R, Baumert M, Caminal P. Methods derived from nonlinear dynamics for analysing heart rate variability. Philos Trans A Math Phys Eng Sci. 2009; 367 (1887): 277-296.
Rodríguez J. Mathematical law of chaotic cardiac dynamic: Predictions of clinic application. J Med Med Sci. 2011; 2 (8): 1050-1059.
Rodríguez J, Correa C, Melo M, Domínguez, D, Prieto S, Cardona DM et al. Chaotic cardiac law: Developing predictions of clinical application. J Med Med Sci. 2013; 4 (2): 79-84.
Rodríguez J, Narváez R, Prieto S, Correa C, Bernal P, Aguirre G et al. The mathematical law of chaotic dynamics applied to cardiac arrhythmias. J Med Med Sci. 2013; 4 (7): 291-300.
Feynman R. Comportamiento cuántico. En: Feynman RP, Leighton RB, Sands M. Física. Wilmington: Addison-Wesley Iberoamericana, SA; 1964. p. 37-16.
Rodríguez J, Bernal P, Álvarez L, Pabón S, Ibáñez S, Chapuel N et al. Predicción de unión de péptidos de MSP-1 y EBA-140 de plasmodium falciparum al HLA clase II probabilidad, combinatoria y entropía aplicadas a secuencias peptídicas. Inmunología. 2010; 29 (3): 91-99.
Tolman R. Principles of statistical mechanics. New York: Dover Publications; 1979.
Garte S. Fractal properties of the human genome. J Theor Biol. 2004; 230 (2): 251-260.
Lefebvre F, Benali H, Gilles R, Kahn E, Di Paola R. A fractal approach to the segmentation of microcalcifications in digital mammograms. Med Phys. 1995; 22 (4): 381-390.
Rodríguez JO, Prieto SE, Correa C, Bernal PA, Puerta GE, Vitery S et al. Theoretical generalization of normal and sick coronary arteries with fractal dimensions and the arterial intrinsic mathematical harmony. BMC Med Phys. 2010; 10: 1.
Velásquez JO, Bohórquez SE, Herrera SC, Cajeli DD, Velásquez DM, de Alonso MM. Geometrical nuclear diagnosis and total paths of cervical cell evolution from normality to cancer. J Cancer Res Ther. 2015; 11 (1): 98-104.
Rodríguez J, Prieto S, Domínguez D, Melo M, Mendoza F, Correa C et al. Mathematical-physical prediction of cardiac dynamics using the proportional entropy of dynamic systems. J Med Med Sci. 2013; 4 (8): 370-381.
Rodríguez J, Prieto S, Bernal P, Izasa D, Salazar G, Correa C et al. Entropía proporcional aplicada a la evolución de la dinámica cardiaca. Predicciones de aplicación clínica. En: Rodríguez LG, coordinador. La emergencia de los enfoques de la complejidad en América Latina: desafíos, contribuciones y compromisos para abordar los problemas complejos del siglo XXI. Buenos Aires: Comunidad Editora Latinoamericana; 2015. p. 315-344.
Rodríguez J, Prieto S, Correa C, Mendoza F, Weiz G, Soracipa Y et al. Physical mathematical evaluation of the cardiac dynamic applying the Zipf-Mandelbrot law. Int J Mod Phys. 2015; 6: 1881-1888.
Rodríguez J, Prieto S, Flórez M, Alarcón C, López R, Aguirre G et al. Physical-mathematical diagnosis of cardiac dynamic on neonatal sepsis: predictions of clinical application. J Med Med Sci. 2014; 5 (5): 102-108.
Rodríguez JO, Prieto SE, Correa C, Pérez CE, Mora JT, Bravo J et al. Predictions of CD4 lymphocytes’ count in HIV patients from complete blood count. BMC Med Phys. 2013; 13 (1): 3.
Correa C, Rodríguez J, Prieto S, Álvarez L, Ospino B, Munévar A et al. Geometric diagnosis of erythrocyte morphophysiology: geometric diagnosis of erythrocyte. J Med Med Sci. 2012; 3 (11): 715-720.
Rodríguez J. Método para la predicción de la dinámica temporal de la malaria en los municipios de Colombia. Rev Panam Salud Pública. 2010; 27 (3): 211-218.
Rodríguez J, Correa C. Predicción temporal de la epidemia de dengue en Colombia: dinámica probabilista de la epidemia. Rev Salud pública. 2009; 11 (3): 443-453.
Rodríguez J. Dynamical systems applied to dynamic variables of patients from the Intensive Care Unit (ICU). Physical and mathematical mortality predictions in ICU. J Med Med Sci. 2015; 6 (8): 102-108.