2017, Number 3
<< Back Next >>
Med Int Mex 2017; 33 (3)
Sodium-glucose co-transporter 2 (SGLT2) inhibitors, kidney as objective in the glycemic control of diabetes mellitus type 2
López-Hernández MA
Language: Spanish
References: 65
Page: 363-371
PDF size: 386.38 Kb.
ABSTRACT
Type 2 diabetes is the most important and prevalent chronic disease today, being an important morbidity and mortality cause worldwide. Despite the great number of medications for diabetes control, many people with this condition do not achieve good glycemic control. Hyperglycemia is the key therapeutic focus in diabetes mellitus management, with many drug families developed to the date for get the target glucose level for prevent the acute and long term complications of this disease. Sodium glucose co-transporter type 2 inhibitors (SGLT2) are a new drug family that reduce renal glucose reabsorption and increase the urinary glucose elimination, thus lowering the blood glucose levels.
REFERENCES
Bays HE. Adiposopathy, diabetes mellitus, and primary prevention of atheroesclerotic coronary artery disease: treating “scik fat” through improving fat function with antidiabetes therapies. Am J Cardiol 2012;110:4B-12B.
Kaiser N, Leibowitz G, Nesher R. Glucotoxicity and beta cell failure in type 2 diabetes mellitus. J Pediatr Endocrinol Metab 2003;16:5 5-22.
Del Prato S. Role of glucotoxicity and lipotoxicity in the pathophysiology of Type 2 diabetes mellitus and emerging treatment strategies. Diabet Med 2009;26:1185-1192.
Reichard P. Nilsson BY, Rosenqvist U. The effect of longterm intensified insulin treatment on the development of microvascular complications of diabetes mellitus. N Eng J Med 1993;329:3004-3009.
Diabetes Control and Complications Trial Research (DCCT) group. The effect of intensive treatment of diabetes mellitus on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Eng J Med 1993;329:977-986.
Ohkubo Y, Kishikawa H, Araki E, et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract 1995;28:103-117.
UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKDPS) Group. Lancet 1998;352:837-853.
UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKDPS) Group. Lancet 1998;352:854-865.
Stratton IM, Adler AI, Neil HA et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 2000;321:405-412.
Patel A, MacMahon S, Chalmers J, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008;358:2560-2572.
Perkovic V, Heerspink HL, Chalmers J, et al. Intensive glucose control improves kidney outcomes in patients with type 2 diabetes. Kidney Int 2013;83:517-523.
Turnbull FM, Abraira C, Anderson RJ, et al. Intensive glucose control and macrovascular outcomes in type 2 diabetes. Diabetologia 2009;52:2288-2298.
Boussageon R, Bejan-Angoulvant T, Saaditan-Elahi M, et al. Effect of intensive glucose lowering treatment on all cause mortality, cardiovascular death, and microvascular events in type 2 diabetes: meta-analysis of randomized controlled trials. BMJ 2011;343:d6898.
Avitabile NA, Banka A, Fonseca VA. Glucose control and cardiovascular outcomes in individuals with diabetes mellitus: lessons learned from the megatrials. Heart Fail Clin 2012;8:513-522.
American Diabetes Association. Standards of medical care in diabetes 2014. Diabetes Care 2014;37:s14-80.
Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2012;35:1364- 1379.
International Diabetes Federation. Global guidelines for type 2 diabetes. 2013. Disponible en www.idf.org/guidelines. Revisado el 27 de mayo de 2014.
Gerich JE. Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutics implications. Diab Med 2010;27:136-142.
Hediger MA, Rhoads DB. Molecular physiology of sodium glucose cotransporters. Physiol Rev 1994;74:993-1026.
Wrigth EM, Loo DD, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev 2011;91:733.94.
Moe OW, Wright SH, Palacin M. Renal handling of organic solutes. In: Brenner BM, editor. Brenner and Rector’s The Kidney. Philadelphia: Saunders Elsevier; 2008:214-247.
Silverman M, Turner JR. Glucose transport in the renal tubule. In: Windhager, editor. Handbook of physiology. New York: Oxford University Press; 1992:217-238.
Mogensen CE. Maximum tubular reabsorption capacity for glucose and renal hemodynamics during rapid hypertonic glucose infusion in normal and diabetics subjects. Scan J Clin Lab Invest 1971;28:101-109.
Rahmoune H, Thompson PW, Ward JM, Smith CD, Hong G, Brown J. Glucose transporters in human renal proximal tubular cells isolated from urine of patients with noninsulin- dependent diabetes. Diabetes 2005;54:3427-3434.
Vestri S, Okamoto MM, de Freitas HS, et al. Changes in sodium or glucose filtration rate modulate expression of glucose transporters in renal proximal tubular cells of rat. J Membr Biol 2001;82:105-112.
Bays H. From victim to ally: the kidney as an emerging target for the treatment of diabetes mellitus. Curr Med Res Opin 2009;25:671-681.
Rossetti L, Giaccari A, DeFronzo RA, Glucose toxicity. Diabetes Care 1990;13:610-630.
Eherenkranz JR, Lewis NG, Kahn CR, Roth J. Phlorizin: a review. Diabetes Metab Res Rev 2005;21:31-38.
Withe JR Jr. Apple trees to sodium glucose co-transporter inhibitors: a review of SGLT2 inhibition. Clin Diabetes 2010;28:5-10.
Alvarado F, Crane RK. Phlorizin as a competitive inhibitor of the active transport of sugars by hamster small intestine, in vitro. Biochim Biophys Acta 1962;56:170-172.
Rossetti L, Smith D, Shulman GI, Papachristou D, DeFronzo RA. Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats. J Clin Invest 1987;78:1510-1515.
Rossetti L, Shulman GI, Zawalich W, DeFronzo RA. Effect of chronic hyperglycemia on in vivo insulin secretion in partially pancreatectomized rats. J Clin Invest 1987;80:1037- 1044.
Oku A, Ueta K, Arakawa K, et al. T1095, an inhibitor of Na+- glucose contransporters, may provide a novel approach to treating diabetes. Diabetes 1999;48:1794-1800.
Bailey CJ, Gross JL, Pieters A, Bastein A, List JF. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with metformin: a randomized double-blind placebo-controlled trial. Lancet 2010;375:2223-2233.
Nauck MA, Del Prato S, Meier JJ. Et al. Dapagliflozin versus glipizide as add-on therapy in patients with type 2 diabetes who have inadequate glycemic control with metformin: a randomized, 52-week, double-blind, active-controlled noninferiority trial. Diabetes Care 2011;34:2015-2022.
Wilding JP, Woo V, Rohwedder K, Sugg J, Parihk S. Dapagliflozin in patients with type 2 diabetes receiving high doses of insulin: efficacy and safety over 2 years. Diabetes Obes Metab 2013. Doi 10. 1111/dom 12187.
List JF, Woo V, Morales E, Tang W, Fiedorek FT. Sodiumglucose cotransport inhibition with dapagliflozin in type 2 diabetes. Diabetes Care 2009;32:650-657.
Wilding JP, Norwood P, T’Joen C, Bastien A, List JF, Fiedorek FT. A study of dapagliflozin in patients with type 2 diabetes receiving high doses of insulin plus insulin sensitizers: applicability of a novel insulin-independent treatment. Diabetes Care 2009;32:1656-1662.
Strojek K, Yoon KH, Hruba V, Elze M, et al. Effecty of dapagliflozin in patients with type 2 diabetes who have inadequate glycemic control with glimepiride: a randomized, 24-week, double blinded, active-controlled trial. Diabetes Obes Metab 2011;13:928-938.
Rosentrock J, Vico M, Wei L, Salsali A, List JF. Effects of dapagliflozin, an SGLT2 inhibitor, on HbA(1c), body weight, and hypoglycemia risk in patients with type 2 diabetes inadequately controlled on pioglitazone monotherapy. Diabetes Care 2012;35:1473-1478.
Wilding JP, Woo V, Soler NG, et al. Long-term efficacy of dapagloflozin in patients with type 2 diabetes mellitus receiving high doses of insulin: a randomized trial. Ann Intern Med 2012;156:405-415.
Ptaszynska A, Chalamandaris AG, Sugg JE, Johnsson KM, Parikh S, List JL, effect of dapagliflozin on renal function. Diabetes 2012;61(suppl):A283(Abstract1098-P).
Stenlof K, Cefalu WT, Kim KA, et al. Efficacy and safety of canagliflozin monotherapy in subjects with type 2 diabetes mellitus inadequately controlled with diet and exercise. Diabetes Obes Metab 2013;15:372-382.
Rosenstock J, Aggarw N, Polidori D, et al. Dose ranging effects of canagliflozin, a sodium- glucose co-transporter 2 inhibitor, as add-on to metformin in subjects with type 2 diabetes. Diabetes Care 2012;35:1232-1238.
Wilding J, Mathieu C, Deng L, et al. Canagliflozin, a sodiumglucose co-transporter 2 inhibitor, improves glycaemnia in subjects with type 2 diabetes inadequately controlled with metformin plus sulphonylurea. Diabetologia 2012;55(Suppl 1):S315 (abstract 766).
Cefalu WT, Leiter LA, Yoon KH, et al. Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATASU): 52 week results from a randomized, double-blind, phase 3 non inferiority trial. Lancet 2013;382:941-950.
Scherthaner G, Gross JL, Rosenstock J, et al. Canagliflozin compared with sitagliptin for patients with type 2 diabetes who do not have adequate glycemic control with metformin and sulphonylurea: a 52 week randomized trial. Diabetes Care 2013;36:2508-2515.
Yale JF, Bakris G, Cariou B, et al. Efficacy and safety of canagliflozin in subjects with type 2 diabetes and chronic kidney disease. Diabetes Obes Metab 2013;15:463-473.
Bode B, Stenlöf K, Sullivan D, Usiskin K. Efficacy and safety of canagliflozin treatment in older subjects with type 2 diabetes mellitus: a randomized trial. Hosp Pract (1995) 2013;41(2):72-84.
Forst T, Guthrie R, Goldenberg R, et al. Efficacy and safety of canagliflozin (CANA) in subjects with type 2 diabetes mellitus (T2DM) on metformin (MET) and pioglitazone (PIO) over 52 weeks. Diabetes 2013; 62 (Suppl. 1): A284 (Abstract 1098-P).
Devinevi D, Morrow L, Hompesch M, et al. Canagliflozin improves glycaemic control over 28 days in subjects with type 2 diabetes not optimally controlled on insulin. Diabetes Obes Metab 2012;14:539-545.
Matthews DR, Fulcher G, Perkovic V, et al. Efficacy and safety of canagliflozin (CANA), an inhibitor of sodium glucose co-transporter 2 (SGLT2) added-on insulin therapy ± oral agents in type 2 diabetes. Diabetologia 2012;55(Suppl. 1):S314 (Abstract 764).
Ferranini E, Seman L, Seewaldt-Becker E, Hantel S, et al. A phase IIb, randomized placebo-controlled study of the SGLT2 inhibitor empagliflozin in patients with type 2 diabetes. Diabetes Obes Metab 2013;15:721-728.
Roden M, Weng J, Eilbracth J, et al. Empagliflozin monotherapy with sitagliptin as an active comparator in patients with type 2 diabetes: a randomised, double-blind, placebocontrolled, phase 2 trial. Lancet Diabetes Endocrinol 2013. Doi:10.1016/S2213-8587(13)70084-6.
Rosenstock J, Seman LJ, Jelaska A, et al. Efficacy and safety of empagliflozin, a sodium glucose co-transporter 2 (SGLT2) inhibitor as add-on to metformin in type 2 diabetes with mild hyperglycaemia. Diabetes Obes Metab 2013. Doi:10.1111/dom.12185.
Woerle HJ, Ferranini E, Berk A, Manunebo M, Pinnetti S, Broedl UC. Safety and efficacy of empagliflozin as monotherapy or add-on to metformin in a 78-week open-label extension study in patients with type 2 diabetes. Diabetes 2012;61(suppl):LB13 (Abstract 49-LB).
Häring HU, Merker L, Seewaldt-Becker E, et al. Empagliflozin as add-on to metformin plus sulphonylurea in patients with type 2 diabetes: a 24-week randomized, double-blind, placebo-controlled trial. Diabetes Care 2013. Doi 10.2337/ dc12-2673.
Häring HU, Merker L, Seewaldt-Becker E, Weimer M, Meinicke T. Empagliflozin as add-on to metformin for 24 weeks improves glycemic control in patients with type 2 diabetes (T2DM). Diabetes 2013;62(Suppl 1):A282 (Abstract 1092-P).
Kovacs CS, Seshia V, Swallow R, et al. Empagliflozin improves glycaemic and weight control as add-on therapy to pioglitazone or pioglitazone plus metformin in patients with type 2 diabetes: a 24-week, randomized, placebocontrolled trial. Diabetes Obes Metab 2013. Doi 10.1111/ dom.12188.
Rosenstock, Jelaska A, Kim G, Broedl UC, Woerle HJ. Empagliflozin as add-on to basal insulin for 78 week improves glycemic control with weight loss in insulin. Treated type 2 diabetes (T2DM). Diabetes 2013;62(Suppl 1):A285(Abstract 1102-P).
Härin HU, Merker L, Seewaldt-Becker E, et al. Empagliflozin as add-on to metformin plus sulphonylurea in patients with type 2 diabetes: a 24-week randomized, double-blind, placebo-controlled trial. Diabetes Care 2013. Doi:10.2337/ dc 12-2673.
Schawartz SL, Akinlade B, Klasen S, et al. Safety, pharmacokinetic, and pharmacodynamics profiles of ipragliflozin (ASP1941), a novel and selective inhibitor of sodiumdependent glucose co transporter 2, in patients with type 2 diabetes mellitus. Diabetes Technol Ther 2011;13:1219- 1227.
Kashiwagi A, Takinami Y, Kazuta K, et al. Ipragliflozin improved glycemic control with additional benefits of reductions of body weight and blood pressure in Japanese patients with type 2 diabetes mellitus: BRIGTHEN Study. Diabetologia 2011;54 (Suppl.1):S68 (abstract 149).
Wilding JP, Ferrannini E, Fonseca VA, Wilpshaar W, Dhanjal P, et al. Efficacy and safety of ipragliflozin in patients with type 2 diabetes inadequately controlled on metformin: a dose finding study. Diabetes Obes Metab 2013;15:403-409.
Kashiwagi A, Shiga T, Akiyama N, et al. Ipragliflozin reduced HbA1c and body weight in Japanese type 2 diabetes patients who have inadequate glycaemic control on sulphonylurea or pioglitazone alone. Diabeteologia 2012;(Suppl 1):S302 (Abstract 739).