2016, Number 6
<< Back Next >>
Rev Invest Clin 2016; 68 (6)
Impact of Aberrant Antigens in the Outcome of Patients with Acute Leukemia at a Referral Institution in Mexico City
Rodríguez-Rodríguez S, Pomerantz A, Demichelis-Gómez R, Barrera-Lumbreras G, Barrales-Benítez OV, Lopez-Karpovitch X, Aguayo Ä
Language: English
References: 33
Page: 305-313
PDF size: 97.20 Kb.
ABSTRACT
Background: Patients with acute leukemia can express aberrant markers, defined as antigens that are normally restricted to a
different lineage. The reported significance and frequency of these markers is inconclusive. We assessed the frequency and impact
of aberrant markers in patients with acute leukemia in a referral institution in Mexico City.
Methods: We included 433 patients,
diagnosed and treated between 2005 and 2015 in our institution.
Results: Aberrant markers were expressed in 128 patients
(29.6%); CD13 and CD33 were the most frequent aberrant markers in patients with acute lymphoblastic leukemia, while CD7
and CD19 were the most frequent in patients with acute myeloid leukemia. In the univariate analysis, the group with aberrant
markers had a lower disease-free survival when compared with the aberrant-free group (8 vs. 13 months) (p = 0.03). Aberrant
expression of CD10, CD20, and CD33 correlated with a worse outcome in a statistically significant manner. In the multivariate
analysis, male gender, lymphoid lineage, secondary leukemia, high risk at diagnosis, and the presence of aberrant markers had
a significantly negative impact on disease-free survival.
Conclusion: The use of more aggressive treatment strategies could be
considered in patients with acute leukemia and an aberrant expression of CD10, CD20, and CD33.
REFERENCES
Peters JM, Ansari MQ. Multiparameter flow cytometry in the diagnosis and management of acute leukemia. Arch Pathol Lab Med. 2011;135:44-54.
Manivannan P, Puri V, Somasundaram V, et al. Can threshold for MPO by flow cytometry be reduced in classifying acute leukaemia? A comparison of flow cytometric and cytochemical myeloperoxidase using different flow cytometric cut-offs. Hematology. 2015;20:455-61.
Griesinger F, Pir-Noack M, Kaib N, et al. Leukaemia-associated immunophenotypes (LAIP) are observed in 90% of adult and childhood acute lymphoblastic leukaemia: Detection in remission marrow predicts outcome. Br J Haematol. 1999;105:241-55.
Sharma RK, Purohit A, Somasundaram V, et al. Aberrant myeloid antigen co-expression is correlated with high percentages of CD34-positive cells among blasts of acute lymphoblastic leukemia patients: An Indian tertiary care center perspective. Blood Res. 2014;49:241-5.
Suggs JL, Cruse JM, Lewis RE. Aberrant myeloid marker expression in precursor B-cell and T-cell leukemias. Exp Mol Pathol. 2007;83:471-3.
Mazher N, Malik N, Imran A, Chughtai O, Chughtai AS. Aberrant expression of CD markers in acute leukemia. Ann Pakistan Inst Med Sci. 2013;9:99-102.
Lahjouji A, Bachir F, Bennani S, Quessar A, Amzazi S. The immunophenotype of adult T acute lymphoblastic leukemia in Morocco. Exp Oncol. 2015;37:64-9.
Dalal BI, Al Mugairi A, Pi S, et al. Aberrant expression of CD13 identifies a subgroup of standard-risk adult acute lymphoblastic leukemia with inferior survival. Clin Lymphoma Myeloma Leuk. 2014;14:239-44.
Craddock KJ, Chen Y, Brandwein JM, Chang H. CD13 expression is an independent adverse prognostic factor in adults with Philadelphia chromosome negative B cell acute lymphoblastic leukemia. Leuk Res. 2013;37:759-64.
Yenerel MN, Atamer T, Yavuz AS, et al. Myeloid antigen expression provides favorable outcome in patients with adult acute lymphoblastic leukemia: a single-center study. Ann Hematol. 2002;81:498-503.
Vitale A, Guarini A, Ariola C, et al. Results of the GIMEMA ALL 0496 trial. Haematologica. 2007;92:342-8.
Bennett JM, Catovsky D, Daniel M-T, et al. Proposals for the classification of the acute leukemias. Br J Haematol. 1976;33: 451-8.
Vardiman JW, Thiele J, Arber DA, et al. The 2008 revision of the WHO classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114:937-52.
Ganzel C, Rowe JM. Prognostic factors in adult acute leukemia. Hematol Oncol Clin North Am. 2011;25:1163-87.
Cheson BD, Bennett JM, Kopecky KJ, et al. Revised recommendations of the International Working Group for diagnosis, standardization of response criteria, treatment outcomes, and reporting standards for therapeutic trials in acute myeloid leukemia. J Clin Oncol. 2003;21:4642-9.
Demichelis-Gómez R, Crespo-Solís E, Pérez-Jacobo LF, Valencia- Rocha UR, Rosas-López A. Outcomes of substituting oral fludarabine for Intravenous fludarabine in combination with cytarabine and filgrastim for treatment of primary refractory or relapsed acute leukemias. Rev Invest Clin. 2015;67:287-95.
Arteaga-Ortiz L, Buitrón-Santiago N, Rosas-López A, et al. [Acute lymphoblastic leukemia: experience in adult patients treated with hyperCVAD and 0195 Protocol, at the Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. Cohort 2003- 2007]. Rev Invest Clin. 2008;60:459-69.
Chiaretti S, Zini G, Bassan R. Diagnosis and subclassification of acute lymphoblastic leukemia. Mediterr J Hematol Infect Dis. 2014;6:1-14.
Sobol R, Mick R, Roystno I, et al. Clinical importance of myeloid antigen expression in adult acute lymphoblastic leukemia. N Engl J Med. 1987;316:1111-7.
Bahia DM, Yamamoto M, Chauffaille MD, et al. Aberrant phenotypes in acute myeloid leukemia: a high frequency and its clinical significance. Haematologica. 2001;86:801-6.
Lopes TC, Andrade KN, Camelo NL, Rodrigues VP, Oliveira RA. Influence of aberrant myeloid expression on acute lymphoblastic leukemia in children and adolescents from Maranhao, Brazil. Genet Mol Res. 2014;13:10301-7.
Cezar RS, Cerqueira BA, da Paz Sde S, et al. Outcome of B-cell acute lymphoblastic leukemia in Brazilian children: Immunophenotypical, hematological, and clinical evaluation. J Pediatr Hematol Oncol. 2015;37:423-8.
Smith FO, Lampkin BC, Versteeg C, et al. Expression of lymphoidassociated cell surface antigens by childhood acute myeloid leukemia cells lacks prognostic significance. Blood. 1992;79:2415-22.
Abdelhaleem M. Frequent but nonrandom expression of myeloid markers on de novo childhood acute lymphoblastic leukemia. Exp Mol Pathol. 2007;83:138-41.
Seegmiller AC, Kroft SH, Karandikar NJ, McKenna RW. Characterization of immunophenotypic aberrancies in 200 cases of B acute lymphoblastic leukemia. Am J Clin Pathol. 2009;132:940-9.
Lewis RE, Cruse JM, Sanders CM, Webb RN, Suggs JL. Aberrant expression of T-cell markers in acute myeloid leukemia. Exp Mol Pathol. 2007;83:462-3.
Urbano-Ispizua A, Matutes E, Villamor N, et al. Clinical significance of the presence of myeloid associated antigens in acute lymphoblastic leukaemia. Br J Haematol. 1990;75:202-7.
Mejstríková E, Kalina T, Trka J, et al. Correlation of CD33 with poorer prognosis in childhood ALL implicates a potential of anti- CD33 frontline therapy. Leukemia. 2005;19:1092-4.
Ossenkoppele GJ, van de Loosdrecht AA, Schuurhuis GJ. Review of the relevance of aberrant antigen expression by flow cytometry in myeloid neoplasms. Br J Haematol. 2011;153:421-36.
Breccia M, De Propris MS, Minotti C, et al. Aberrant phenotypic expression of CD15 and CD56 identifies poor prognostic acute promyelocytic leukemia patients. Leuk Res. 2014;38:194-7.
Schiller GJ. High-risk acute myelogenous leukemia: treatment today ... and tomorrow. Hematology. 2013;2013:201-8.
Bhojwani D, Howard SC, Pui C-H. High-risk childhood acute lymphoblastic leukemia. Clin Lymphoma Myeloma. 2009;9:S222-30.
Firat H, Favier R, Adam M, et al. Determination of myeloid antigen expression on childhood acute lymphoblastic leukaemia cells: discrepancies using different monoclonal antibody clones. Leuk Lymphoma. 2001;42:75-82.