2016, Number 1
<< Back Next >>
Rev Cubana Farm 2016; 50 (1)
Preliminary evaluation of the antiviral activity of Laurencia obtuse extract against herpesvirus and dengue virus
Rojas PL, Álvarez VM, Morier DLF, Valdés IO, del Barrio AG
Language: Spanish
References: 33
Page: 106-116
PDF size: 170.56 Kb.
ABSTRACT
Introduction: herpes simplex and dengue viruses are the most important human
pathogens with high levels of morbidity and mortality. Lack of vaccine development
for these viruses, non-existence of drugs for dengue treatment and the emergence
of new herpes virus variants resistant to drugs currently in use reinforce the need
for new sources of antiviral drugs. Algae remain an interesting alternative in this
regard, due to the diversity of compounds with biological activity found in these
organisms.
Objective: to evaluate the
in vitro antiviral activity of a hydroalcoholic extract of
the red seaweed Laurencia obtusa against herpes simplex type 1, herpes simplex
type 2 and dengue virus.
Methods: the mean cytotoxic concentration was determined by using the MTT
reduction assay in Vero and C6/36HT cells. Mean effective concentration was
estimated with the cytopathic effect inhibition in Vero or C6/36HT cells depending
on the virus. Selective index (SI) =CC
50/EC
50 was calculated.
Results: hydroalcoholic extract from L.obtusa was not toxic at the evaluated
concentrations The extract managed to inhibit HHV 1 y HHV 2 virus replication in
Vero cells with SI values higher than 29 and 42, respectively. On the other hand
there was no inhibition of DENV-2 replication in C6/36HT cells.
Conclusions: hydroalcoholic extract from
L. obtusa showed
in vitro antiviral
activity against HHV 1 and HHV 2 and could be employed as a source for new
antiviral compounds. This is the first report on the antiviral activity of this alga
species.
REFERENCES
Organización Mundial de la Salud. Estadísticas sanitarias mundiales 2014. Ginebra: OMS; 2014. 2.Dasgupta G, Chentoufi A, Nesburn A, Wechsler S, BenMohamed L. New concepts in herpes simplex virus vaccine development: notes from the battlefield. Expert Rev Vaccines. 2009;8:1023-1035
Perry S, BuckM, Shresta S. Better late than never: antivirals for dengue. Expert Rev. Anti Infect. Ther. 2011;9:755-757.
Piret J, Boivin G. Resistance of Herpes Simplex Viruses to Nucleoside Analogues:Mechanisms, Prevalence, and Management. Antimicrob Agents Chemother. 2011;55:459-472.
Wang L, Wang X, Wu H, Liu R. Overview on Biological Activities and Molecular Characteristics of Sulfated Polysaccharides from Marine Green Algae in Recent Years. Mar. Drugs.2014;12:4984-5020.
Jassbia A, Mohabatia M, Eslamia S, SohrabipourbJ, Miri R. Biological Activity and Chemical Constituents of Red and Brown Algae from the Persian Gulf. Iran J Pharm Res. 2013;12:339-348.
Soares A, Robaina M, Mendes G, Silva T, Gestinari L, Pamplona O, Yoneshigue- Valentin Y, Kaiser C, Villela M. Antiviral activity of extracts from Brazilian seaweeds against herpes simplex virus. Braz J Pharmacog. 2012;22:714-723.
Barton C,Kouokam JC,Lasnik A, Foreman O, Cambon A, Brock G, et al. Activity and Effect of Subcutaneous Treatment with the Broad-Spectrum Antiviral Lectin Griffithsin in Two Laboratory Rodent Models. Antimicrob. Agents Chemother. 2014;58:120-127.
Talarico LB, Pujol CA, Zibetti RGM, Faría PCS, Noseda MD, Duarte MER, Damonte EB. The antiviral activity of sulfated polysaccharides against dengue virus is dependent on virus serotype and host cell. Antiviral Research. 2005;66:103-110.
Littler DS, Littler MM. Caribbean Reef Plants. Washington: Off Shore Graphics;.2000.
Miranda M, Cuéllar A. Farmacognosia y productos naturales. La Habana: Editorial Félix Varela; 2001.
British Pharmacopoeia. Vol IV (Appendix XI M). Tannins in Herbal Drugs. Londres: The Stationery Office; 2010. Disponible en: http:// www.pharmacopoeia.co.uk
Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein- dye binding. Anal Biochem.1976;72: 248-254.
Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal.Chemistry. 1956;28:350-356.
Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Canadian Journal Biochem.Physiol. 1959;37(8):146-148.
Craigie JS, Leigh C. Handbook of Phycological Methods. Cambridge: Univ. Press; 1978. p. 109-131.
Reed LJ, Muench H. A simple method of estimatingfifty per cent endpoints. Am. J. Hyg. 1938;27:493-497.
Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J.Immunol Methods. 1983; 65: 55-63.
del Barrio G, Parra F. Evaluation of the antiviral activity of an aqueous extract for Phyllantus orbicularis. J Etnopharmacology. 2000;72:317-322.
Wyde P, Ambrose M, Meyerson L, Gilbert B. The antiviral activity of SP-303, a natural polyphe-nolic polymer, against respiratory syncytial and parainfluenza type 3 viruses in cotton rats.Antiviral Research.1993;20:145-154.
Chattopadhyay K, Mateu CG, Mandal P, Pujol CA, Damonte EB, Ray B.. Galactan sulfate of Grateloupiaindica: Isolation, structural features and antiviral activity. Phytochemistry. 2007; 68: 1428-1435.
Mandal P, Pujol CA, Carlucci MJ, Chattopadhyay K, Damonte EB, Ray B. Antiherpetic activity of a sulfated xylomannan from Scinaiahatei. Phytochemistry. 2008; 69: 2193-2199.
Bouhla IR, HaslinC, Chermann J, Colliec-Jouault S, Sinquin C, Simon G, et al. Antiviral Activities of Sulfated Polysaccharides Isolated from Sphaerococcus coronopifolius (Rhodophytha, Gigartinales) and Boergeseniella thuyoides (Rhodophytha, Ceramiales). Mar Drugs. 2011; 9(7): 1187-1209.
Matsuhiro B, Conte AF, Damonte EB, Kolender AA, Matulewicz MC, Mejías EG, et al Structural analysis and antiviral activity of a sulfated galactan from the red seaweed Schizymeniabinderi (Gigartinales, Rhodophyta). Carbohydr Res. 2005; 340(15):2392-402.
Koishi AC, Zanello PR, Bianco ÉM, Bordignon J, Nunes Duarte dos Santos C. Screening of Dengue Virus Antiviral Activity of Marine Seaweeds by an In Situ Enzyme-Linked Immunosorbent Assay. PLoS ONE 2012; 7: e51089.
Rodríguez MC., Merino ER., Pujol CA., Damonte EB., Cerezo AS, Atulewicz MC. Galactans from cystocarpic plants of the red seaweed Callophyllisvariegata (Kallymeniaceae, Gigartinales).Carbohydr.Res. 2005; 340: 2742-2751.
Talarico LB, Noseda MD, Ducatti DRB, Duarte MER, Damonte EB. Differential inhibition of dengue virus infection inmammalian and mosquito cells by iotacarrageenan. Journal of General Virology. 2011; 92:1332-1342.
Cabrita MT, Vale C, Rauter AP. Halogenated Compounds from Marine Algae. Mar. Drugs. 2010; 8: 2301-2317.
Sun J Shi D Ma M Li S Wang S Han L, et al. L.-Sesquiterpenes from the red alga Laurenciatristicha. J. Nat. Prod. 2005; 68: 915-919.
Ayyad SE, Al-Footy KO, Alarif WM, Sobahi TR, Bassaif SA, Makki MS, et al. Bioactive C15 acetogenins from the red alga Laurenciaobtusa. Chem Pharm Bull. 2011; 59(10):1294-8.
König GM, Wright AD. Sesquiterpene content of the antibacterial dichloromethane extract of the marine red alga Laurenciaobtusa. Planta Med.1997; 63(2):186-7.
Alarif WM, Al-Lihaibi SS, Ayyad SE, Abdel-Rhman MH, Badria FA. Laurene-type sesquiterpenes from the Sea red alga Laurenciaobtusa as potential antitumorantimicrobial agents. Eur J Med Chem. 2012; 55:462-6.
Pérez-Rivero A., Piñón Ramos A, Morier Díaz, Torres López Y, Mendoza Llanes D, Del Barrio Alonso G. Actividad antiviral de un extracto acuoso del alga roja Laurencia obtusa frente a virus influenza A y B. Rev Cubana Med Trop. 2014; 66. Disponible en: http://www.revmedtropical.sld.cu/index.php/medtropical/article/view/40/29 .
Damonte EB, Matulewicz MC, Cerezo AS. Sulfated seaweed polysaccharides as antiviral agents. Curr Med Chem 2004; 11:2399-2419.