2016, Number 4
<< Back Next >>
Rev Cubana Invest Bioméd 2016; 35 (4)
Comparative study of the methods of electrocardiographic signal delineation based on Transformed Wavelet
Pérez GRE, Noriega AM, Céspedes PA
Language: Spanish
References: 14
Page: 311-322
PDF size: 421.05 Kb.
ABSTRACT
Introduction: Cardiovascular diseases represent the most frequent cause of premature death and disability worldwide. They are the second cause of death in Cuba, with sizeable increase in a short period of time.
Objectives: To make a comparative study of the main automatic delineators of electrocardiographic signals based on the Transformed Wavelet in order to confirm the effectiveness of each of them at the time of detecting and delineating the start of the QRS complex, the main peak of the wave in QRS complex and the end of the T-wave.
Methods: The study was performed by using the delineation of a set of simulated signals affected by the mechanical effect of respiration and noise taken from real registers of stress tests. Additionally, the different uniderivational and multiderivational automatic systems of electrocardiographic signal delineation based on Wavelet Transform and they were applied to the referred signals.
Results: The variability of the uniderivational method errors for the different leads was confirmed; hence it is not easy to choose one of the 12 leads as the most suitable for the wave delineation. The multiderivational strategies perform better in the wave peak and in the waves with lower signal-to-noise ratio.
Conclusions: The delineation methods based on Wavelet Transform do not require any prefiltering or preprocessing for noise elimination. The multiderivational method is the one that makes the best use of the spatial information provided by the orthogonal leads, thus allowing a more precise delineation of the electrocardiographic signal in the waves with lower signal/noise ratio.
REFERENCES
Ochoa Montes LA, González Lugo M, Vilches Izquierdo E. Muerte súbita cardiovascular en poblaciones de riesgo. CorSalud, Revista de Enfermedades Cardiovasculares. 2014;6:71-8.
Ministerio de Salud Pública. Anuario Estadístico de Salud 2012. 2013 [Citado 06 Abr 2016]. Disponible en: http://files.sld.cu/dne/files/2013/04/anuario_2012.pdf
Noriega Alemán M, Almeida R, Martínez JP, Laguna P. Medida Multiderivacional de QT en el ECG de 12 derivaciones del sistema EASI. Actas de XXVII Congreso Anual de la Sociedad Española de Ingeniería Biomédica. CASEIB; 2009. p. 625-8.
Martínez Rodrigo A, Alcalaz Martínez R, Real Serrano J, Sánchez Melendez C, Rieta Ibañez JJ. Aplicación de la Transformada Fasorial en la Delineación Automática de Puntos Fiduciales en el ECG. Libro Actas XXVIII Congreso Anual de la Sociedad Española de Ingeniería Biomédica. CASEIB; 24-26 noviembre 2010. p. 1:1-4.
Silva C, Lillo P, Gatica V, Alegría D. Mejoramiento de Algoritmo Clásico de Detección de Complejos QRS en Señal Electrocardiográfica. Ingeniare. 2010;18:176-82.
Almeida R, Martínez JP, Rocha AP, Laguna P. Multilead ECG Delineation Using Spatially Projected Leads From Wavelet Transform Loops. IEEE Transactions on Biomedical Engineering. 2009;56(8):1996-2005. doi:10.1109/TBME.2009.2021658.
Martínez JP, Almeida R, Olmos S, Rocha AP, Laguna P. A Wavelet-Based ECG Delineator Evaluation on Standard Databases. IEEE Transactions on Biomedical Engineering. 2004;51(4):570-81. doi:10.1109/TBME.2003.821031.
Almeida R. Automatic ECG characterization: Application to QT Interval Variability. 2006. doi:10.1017/CBO9781107415324.004.
Noriega Alemán M. Estudio comparativo de la delineación multiderivacional en la señal electrocardiográfica; 2010.
Noriega Alemán M, Martínez JP, Laguna P, Bailón R, Almeida R. Respiration effect on wavelet-based ECG T-wave end delineation strategies. IEEE Transactions on Biomedical Engineering. 2012;59(7):1818-28. doi:10.1109/TBME.2011.2157824.
Sörnmo L. Vectorcardiographic loop alignment and morphologic beat-to-beat variability. Biomedical Engineering. IEEE Transactions. 1998;45(12):1401-13.
Bailón R, Mateo J, Olmos S, Serrano P, García J, Del Río A, et al. Coronary artery disease diagnosis based on exercise electrocardiogram indexes from repolarisation, depolarisation and heart rate variability. Medical and Biological Engineering and Computing. 2003;41(5):561-71.
Hampel FR, Ronchetti EM, Rousseeuw PJ, Stahel WA. Robust Statistics: The Approach Based on Influence Functions. (John Wiley & Sons, ed.); 2011.
Dower GE. The ECGD: a derivation of the ECG from VCG leads. J Electrocardiol. 1984;17(2):189-91.