2016, Number 3
<< Back Next >>
Odovtos-Int J Dent Sc 2016; 18 (3)
Biocompatibility of Nanofibrous Scaffolds with Different Concentrations of PLA/Hydroxyapatite
Altamirano VAA, Vargas BN, Vázquez VFC, Vargas KT, Montesinos MJJ, Alfaro ME, Álvarez PMA
Language: Spanish
References: 33
Page: 39-50
PDF size: 256.34 Kb.
ABSTRACT
In tissue engineering field to achieve tissue regeneration, there is particular interest in the
manufacturing of new functional biomaterials capable of stimulating the biological response needed
to restore the functions of damaged tissue. Recently, several strategies in attempt to mimic the
extracellular matrix of the tissues of the human body by synthesized new biomaterials are focusing
using nanotechnology. Thus, the purpose of this investigation was to synthesize and evaluate the
response of the biocompatibility of nanofibrilar scaffold with different concentrations of PLA doped
with hydroxyapatite. Scaffolds of PLA were synthesized using the air jet spinning (AJS) technology from
different concentrations of 6, 7, and 10% of PLA polymeric solutions (w/v) in chloroform/ethanol in a 3:1
ratio (v/v), and for the synthesis of the composite scaffolds to the polymeric solutions were added 0.1g
of hydroxyapatite. The biocompatibility of PLA nanofibers scaffolds and PLA/HA nanofiber composite
were assessed by analyzing the response of cell adhesion, cell viability and cell-material interaction
using mesenchymal stem cells derived from bone marrow (BM-MSC). The results indicate that the
cell response related to biocompatibility by the BM-MSC cells was increased in the PLA/HA nanofiber
composites when compared to PLA nanofiber scaffolds showing statistically significant differences (p
‹0.05). In conclusion, AJS technique allows synthesizing nanofibers spun mats that could have a direct
application in the field of bone guide tissue engineering in the dental clinic because of its biocompatibility
and easy scaffold design.
REFERENCES
Vallet-Regí M. "Ceramics for medical applications. Perspective Article". Journal of the Chemical Society, Dalton Transaction 2001; 2: 97-108.
Handbook of biomaterial properties. Ed By J. Black and G. Hasting, Chapman and Hall. 1998.
http://europa.eu.int/comm/research/growth/ gcc/projects/in-action-biomat03.html
Vallet-Regí M., González-Calbet J. "Calcium phosphates in the substitution of bone tissue". Progress in Solid State Chemistry 2004; 32 (1): 1-31.
Vallet-Regí M., Ragel C. V., Salinas A. J. "Glasses with medical applications". European Journal of Inorganic Chemistry 2003; 6: 1029-1042.
Zhang F., Chang J., Lu J., Lin K., Ning C. "Bioinspired structure of bioceramics for bone regeneration in load-bearing sites". Acta Biomateralia 2007; 3 (6): 896–904.
Huang Z. M., Zhang Y. Z., Kotaki M., Ramakrishna S. "A review on polymer nanofibers by electrospinning and their applications in nanocomposites". Composites Science and Technology 2003; 63 (15): 2223-2253.
Cabañas M. V., Vallet-Regí M. "Calcium phosphate coatings deposited by aerosol chemical vapour deposition". Journal of Materials Chemistry 2003; 3: 1104-1107.
Vallet-Regí M., Román J., Padilla S., Doadrio J. C., Gil F. J. "Bioactivity and mechanical properties of SiO2-CaO-P2O5 glass-ceramics". Journal of Materials Chemistry 2005; 15: 1353-1359.
Frayssinet P., Gineste L., Conte P., Fages J., Rouquet N. "Short-term implantation effects of a DCPD-based calcium phosphate cement". Biomaterials 1998; 19(11-12), 971-977.
Kim H. M. "Bioactive ceramics: Challenges and perspectives". Journal of the Ceramic Society of Japan 2001; 109 (4): 49-57.
Greenspan D.C. "Bioactive ceramic implant materials". Current Opinion in Solid State & Materials Science 1999; 4 (4): 389-393.
Rámila A., Padilla S., Muñoz B., Vallet-Regí M. "A new hydroxyapatite/glass biphasic materials: in vitro bioactivity". Chemistry of Materials 2002; 14: 2439-2443.
Vallet-Regí M., Rámila A., Padilla S., Muñoz B. "Bioactive glasses as accelerators of the apatites bioactivity". Journal of Biomedical Materials Research Part A 2003; 66: 580-585.
Bouler J. M., Legeros R. Z., Daculsi G. "Biphasic calcium phosphates: influence of three síntesis parameters on the HA/beta TCP ratio". Journal of Biomedical Materials Research Part A 2000; 51 (4): 680-684.
Vallet-Regí M., Salinas A. J., Ramírez- Castellanos J., González-Calbet J. M. "Nanostructure of bioactive sol-gel glasses and organic-inorganic hybrids". Chemistry of Materials 2005; 17, 1874-1879.
Doshi J., Reneker D. H. "Electrospinning process and application of electro-spun fibers". Electrostatics 1995; 35: 151-160.
Reneker D. H., Chun I. "Nanometre diameter fibres of polymer produced by electrospinning". Nanotechnology 1996; 7 (3): 216-223.
Subbiah T., Bhat G. S., Tock R. W., Parameswaran S., Ramkumar S. S. "Electrospinning of Nanofibers". Journal of Applied Polymer Science 2005; 96 (2): 557-569.
Hohman M. M., Shin M., Rutledge G., Brenner M. P. "Electrospinning and electrically forced jets. Stability theory". Physics of Fluids 2001; 13 (8): 2201-2220.
Ramakrishna S., Fujihara K., Teo W. E., Yong T., Ma Z., Ramaseshan R. "Electrospun nanofibers: solving global issues". Materials Today 2006; 9 (3): 40-50.
Xiao L., Wang B., Yang G., Gauthier M. "Poly (Lactic Acid)-based biomaterials: synthesis,modification and applications". Biomedical Science, Engineering and Technology, Prof. Dhanjoo N. Ghista (Ed.), ISBN: 978-953-307-471-9; 2012.
Taddei P., Di Foggia M., Causa F., Ambrosio L., Fagnano C. "In vitro bioactivity of poly(ε- caprolactone)-apatite (PCL-AP) scaffolds for bone tissue engineering: the influence of the PCL/AP ratio". The International journal of Artificial Organs 2006; 29: 719-725.
Zhang P., Hong Z., Yu T., Chen X., Jing X. "In vivo mineralization and osteogenesis of nanocomposite scaffold of poly (lactideco- glycolide) and hydroxyapatite surfacegrafted with poly(L-lactide)". Biomaterials 2009; 30 (1): 58-70.
Danoux C. B., Barbieri D., Yuan H., de Bruijn J. D., van Blitterswijk C. A., Habibovic P. "In vitro and in vivo bioactivity assessment of a polylactic acid/hydroxyapatite composite for bone regeneration". Biomatter 2014; 4:e27664. doi: 10.4161/biom.27664.
Jing W., Zhang M., Jin L., Zhao J., Gao Q., Ren M., Fan Q. "Assessment of osteoinduction using a porous hydroxyapatite coating prepared by micro-arc oxidation on a new titanium alloy". International Journal of Surgery. 2015; 24:51-56.
Chang B. S., Lee C. K., Hong K. S., Youn H. J., Ryu H. S., Chung S. S., Park K. W. "Osteoconduction at porous hydroxyapatite with various pore configurations". Biomaterials 2000; 21 (12): 1291-1298.
Woo K. M., Chen V. J., Ma P. X. "Nanofibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment". Journal of Biomedical Materials Research Part A 2003; 67 (2): 531-537.
Smith L. A., Liu X., Hu J., Ma X. “The influence of three-dimensional nanofibrous scaffolds on the osteogenic differentiation of embryonic stem cells”. Biomaterials 2009; 30 (13): 2516-2522.
Gupta K. CH., Haider A., Choi Y., Kang I. "Nanofibrous scaffolds in biomedical applications". Biomaterials Research 2014; 18 (5): 1-11.
Persson M., Lorite G. S., Kokkonen H. E., Cho S. W., Lehenkari P. P., Skrifvars M., Tuukkanen J. "Effect of bioactive extruded PLA/HA composite films on focal adhesion formation of preosteoblastic cells". Colloids and Surfaces B: Biointerfaces 2014; 121:409-16.
Washburn N. R., Yamada, K. M., Simon C. G., Kennedy S. B., Amis E. J. Highthroughput investigation of osteoblast response to polymer crystallinity: influence of nanometer-scale roughness on proliferation. Biomaterials 2004; 25 (7-8): 1215-24.
Jeong S. I., Ko E. K., Yum J., Jung Ch. H., Lee Y. M., Shin H. "Nanofibrous Poly(lactic acid)/Hydroxyapatite Composite Scaffolds for Guided Tissue Regeneration". Macromolecular Bioscience 2008; 8:328-338.