2017, Number 1
<< Back Next >>
Medicentro 2017; 21 (1)
Kidney damage associated to mild hyperglycemia in an animal model of diabetes
Álvarez MA, Béquer ML, Gómez HT, Molina MJL, Lavastida PM, Clapés HS
Language: Spanish
References: 20
Page: 46-56
PDF size: 447.24 Kb.
ABSTRACT
Introduction: diabetic nephropathy is one of the microvascular complications of diabetes mellitus, which is also associated with low life expectancy. Thus, it is necessary to establish appropriate animal models for doing research on pathogenesis, as well as, to develop new therapeutic strategies.
Objective: to evaluate renal function in Wistar rats with mild hyperglycemia.
Methods: an animal model of mild hyperglycemia in neonatal streptozotocin-induced Wistar rats was used. Weight, water intake, food and quantity of urination were measured at 90 days of age. Several parameters were determined in the collected urine. Metabolic status was evaluated through glucose tolerance tests and serum renal indicators. Morphometric study of the kidneys was performed.
Results: diabetic animals showed no difference in body weight; food and water intake, amount of urine excreted, creatinine and urea were significant higher. Urine was more basic and less dense in the diabetic group; protein excretion was significantly higher than in the control groups. Other urinary parameters were unchanged. Apart from the hypertrophy, there were no observed external anomalies in the kidneys.
Conclusions: incipient renal failure was observed in the animal model of mild hyperglycemia, which is reflected in morphological, urine and serum parameters.
REFERENCES
Guías ALAD sobre el diagnóstico, control y tratamiento de la diabetes mellitus Tipo 2 con Medicina Basada en Evidencia. Edición 2013. Rev ALAD. 2013:1-142.
Gómez R, Martínez A, Artola S, Górriz JL, Menéndez E. Documento de Consenso sobre el tratamiento de la diabetes tipo 2 en el paciente con enfermedad renal crónica. Nefrología. 2014;34(1):34-45.
Kong L, Wu H, Cui W, Zhou W, Luo P, Sun J, et al. Advances in Murine Models of Diabetic Nephropathy. J Diabetes Res. 2013:1-10.
Damasceno DC, Netto AO, Iessi IL, Gallego FQ, Corvino SB, Dallaqua B, et al. Streptozotocin-Induced Diabetes Models: Pathophysiological Mechanisms and Fetal Outcomes. BioMed Res Int [internet]. 2014 May 27 [citado 5 oct. 2015];2014:[aprox. 11 p.]. Disponible en: https://www.hindawi.com/journals/bmri/2014/819065/
Saini S, Kumari S, Verma SK, Sharma AK. A Review on Different Types of Animal Models for Pharmacological Evaluation of Antidiabetic Drugs. Int J Pharm Phytopharmacol Res. 2013;3(1):2-12.
Goyal SN, Reddya NM, Patilb KR, Nakhatec KT, Ojhad S, Patil CR, et al. Challenges and issues with streptozotocin-induced diabetes – A clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics Chem Biol Interact. 2016;244:49-63.
Medi-Test URYXXON. Roma: C.P.M. S.A.S; 2013.
Ministerio de Salud Pública. Anuario Estadístico de Salud 2014 [internet]. La Habana: Dirección de Registros Médicos y Estadísticas de Salud; 2015 [citado 5 oct. 2015]. Disponible en: http://files.sld.cu/bvscuba/files/2015/04/anuario-estadistico-de-salud-2014.pdf
Bequer L, Gómez T, Molina JL, Artiles D, Bermúdez R, Clapés S. Acción diabetogénica de la estreptozotocina en un modelo experimental de inducción neonatal. Biomédica. 2016;26(2).
Ciobotaru E. Spontaneous Diabetes Mellitus in Animals. En: Oguntibeju OO, editor. Diabetes Mellitus - Insights and Perspectives. Croatia: InTech; 2013. p. 271-96.
Segura J, Ruilope LM. Contribución del riñón en la homeostasis de la glucosa. Med Clín (Barc). 2013;141(Supl. 2):26-30.
Delaney MP, Price C, Lamb EJ. Kidney Function and Disease. En: Burtis CA, Ashwood E, Bruns DE, Sawyer BG, editors. Tietz Fundamentals of Clinical Chemistry. 6th. ed. St. Louis, Missouri: Saunders. Elsevier; 2008. p. 632-52.
Ramiréz Maldonado PM. Desarrollo de micro-albuminuria en la diabetes experimental inducida por estreptozotocina. Chile: Universidad Austral de Chile; 2007.
Gómez T, Bequer L, Sánchez C, de la Barca M, Muro I, Reyes MA, et al. Inducción neonatal de hiperglucemias moderadas: indicadores metabólicos y de estrés oxidativo en ratas adultas. Rev ALAD. 2014;4(4):148-57.
Bequer L, Gómez T, Molina JL, López F, Gómez CL, Clapés S. Inducción de hiperglicemias moderadas en ratas wistar por inoculación neonatal de estreptozotocina. ¿Inyección subcutánea o intraperitoneal? Rev Argent Endocrinol Metab. 2014;51(4):178-84.
Pradeepa S, Subramanian S, Kaviyarasan V. Biochemical evaluation of antidiabetic properties of Pithecellobium dulce fruits studied in streptozotocin induced experimental diabetic rats. IJHM. 2013;1(4):21-8.
Zafar M, Naeem-ul-Hassan Naqvi S. Effects of STZ-Induced Diabetes on the Relative Weights of Kidney, Liver and Pancreas in Albino Rats: A Comparative Study. Int J Morphol. 2010;28(1):135-42.
Bermúdez V, Bermúdez F, Arraiz N, Leal E, Linares S, Mengual E, et al. Biología molecular de los transportadores de glucosa: clasificación, estructura y distribución. Arch Venez Farmacol Ter. 2007;26(2):76-86.
Schrijvers BF, De Vriese AS, Flyvbjerg A. From Hyperglycemia to Diabetic Kidney Disease: The Role of Metabolic, Hemodynamic, Intracellular Factors and Growth Factors/Cytokines. Endocr Rev. 2004;25(6):971-1010.
Kojima N, Slaughter TI, Paige A, Kato S, Roman RJ, Williams JM. Comparison of the Development Diabetic Induced Renal Disease in Strains of Goto-Kakizaki Rats. J Diabetes Metab. 2013;S9:005.