2016, Number 3
<< Back Next >>
AbanicoVet 2016; 6 (3)
Behaviour of Escherichia coli in cow feces added with of hydrolysable tannins
Heras-Sierra T, Enríquez-Verdugo I, Gaxiola-Camacho S, Romo-Rubio J, Anne-Marie P, Barajas-Cruz R
Language: Spanish
References: 21
Page: 47-54
PDF size: 186.44 Kb.
ABSTRACT
To evaluate behavior of
E. coli in feces of dairy cows added with hydrolysable tannins, an experiment was conducted, in which aliquots of 100 g were randomly assigned to two hydrolysable tannins levels (0 or 10%), three values of pH 5.2, 6.5 and 8.3, and cultured at 0, 2, 6, 9, 15, 22, and 30 days after tannins addition. Feces added with HT 10% shown the highest
E. coli growth (
P ‹ 0.01) compared to those that did not received HT (Log
10 5.071
vs. Log
10 4.401). Feces with 6.5-pH value had lower values (
P ‹ 0.01) of
E. coli (Log
10 4.525)
vs. pH 5.2 (Log
10 4.866), and pH 8.3 (Log
10 4.816). In all cases the
E. coli growth diminished (
P ‹ 0.01) as increased days number (Log
10 = 5.51 day 0; Log
10 = 3.36 at day 30). The results suggest that HT did not inhibit E. coligrowth in feces of cows; however, at pH values close to neutrality the
E. coli growth decreases.
REFERENCES
AOAC. Official Methods of Analysis. 15th ed. Assoc. Off. Anal. Chem., Arlington, VA. 1990. ISBN 0-935584-42-0
ASAKURA H, Kawamoto K, Haishima Y, Igimi S, Yamamoto S, Makino S. Differential expression of the outer membrane protein w (ompw) stress response in enterohemorrhagic Escherichia coli O157: H7 corresponds to the viable but non-culturable state. Research in Microbiology. 2008; 159, 709-717. doi:10.1016/j.resmic.2008.08.005
BERRY ED, Wells JL, Archibeque SL, Farrel CL, Freetly HC, Miller DN. Influence of genotype and diet on steer performance, manure odor, and carriage of pathogenic and other fecal bacteria. II. Pathogenic and other fecal bacteria. Journal of Animal Science. 2006; 84, 2523-2532. DOI:10.2527/jas.2005-747
CALLAWAY TR, Carr MA, Edrington TS, Anderson RC, Nisbet DJ. Diet, Escherichia coli O157:H7, and cattle. Molecular Biology. 2009; 11, 67-80. https://www.ncbi.nlm.nih.gov/pubmed/19351974
CRUZ AM, Gómez CA, Villagómez JR, Chavarría N, Rodríguez J, Vargas ER, Castro R. antibacterial effect againts foodborne bacteria of plants used in traditional medicine in central México: studies in vivo and in raw beef. Food Control. 2013; 32, 289-295. https://www.uaeh.edu.mx/investigacion/producto.php?producto=5315
DUNGAN RS. Fate and transport of bioaerosols associated with livestock operations and manures. Journal of Animal Science. 2010; 88, 3693-3706. DOI:10.2527/jas.2010-3094
FRUTOS P, Hervás G, Giraldez FJ, Mantecón AR. Tannins and ruminant nutrition. Spanish Journal of Agricultural Research. 2004; 2,191-202. http://revistas.inia.es/index.php/sjar/article/view/73/0
GOEL G, Kumar A, Beniwal V, Raghav M, Puniya AK, Singh K. Degradation of tannic acid and purification and caracterization of tannasse from Enterococcus faecalis. International Biodeterioration and Biodegradation. 2011; 65, 1061-1065. doi:10.1016/j.ibiod.2011.08.006
GUTIERREZ H, Pinchak WE, Min BR, Carstens GE, Anderson RC, Tedeschi LO, Krueger WK, Krueger NA, Lancaster PA, Gomez RR. Effects of feed-supplementation and hide-spray application of two sources of tannins on enteric and hide bacteria of feedlot cattle. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes. 2011; 46, 360-365. DOI:10.1080/03601234.2011.559419
HICKS CR. Fundamental Concepts in the Design of Experiments. Holt, Reinhardt and Wiston, New York. 1973. ISBN 003080132x
KUMAR M, Nair M, Vasudevan P, Venkitanarayan K. Antibacterial effect of black seed oil on Listeria monocytogenes. Food Control. 2005; 16, 395-398. Doi:10.1016/j.foodcont.2004.04.006
MAWDSLEY JL, Bardgett RD, Merry RJ, Pain BF, Theodorou MK. Pathogens in livestock waste, their potential for movement through soil and environmental pollution. Applied soil Ecology. 1995; 2, 1-15. 10.1016/0929-1393(94)00039-a
PINHEIRO AC, Silvestre H, Mello S, Manique PL, Werneck CR, Maraschin M, Salvador SR, Block JM. Effect of the extraction process on the phenolic compounds profile and the antioxidant and antimicrobial activity of extracts of pecan nut. Industrial Crops and Products. 2014; 52, 552-561. http://dx.doi.org/10.1016/j.indcrop.2013.11.031
SETIA A, Bhandari SK, House JD, Nyachoti CM, Krause DO. Development and in vitro evaluation of an Escherichia coli probiotic able to inhibit the growth of pathogenic Escherichia coli K88. J Anim. Sci. 200; 87:2005-2012. DOI:10.2527/jas.2008-1400
SHEN X, Sun XH, Xie Q, Lui H, Zhao Y, Pan Y, Hwang CH, Wu VCH. Antimicrobial effect of blueberry (Vaccinium corymbosum) extracts against the growth of Listeria monocytogenes and Salmonella enteritidis. Food Control. 2014; 35, 159-165.
STATISTIX. Statistix User´s Manual, Release 9.0. Analytical Software, Tallahassee, FL. 2007. http://dx.doi.org/10.1016/j.foodcont.2013.06.040
TAYLOR PA, Hamilton-Miller JMT, Stapleton PD. Antimicrobial properties of green tea cathechins. Food Science Technology bull. 2005; 2, 71-81. http://pubmedcentralcanada.ca/pmcc/articles/PMC2763290/pdf/nihms-1032.pdf
VAREL VH, Miller DN, Berry ED. Incorporation of thymol into corncob granules for reduction of odor and pathogens in feedlot cattle waste. Journal of Animal Science. 2006; 84,481-487. http://naldc.nal.usda.gov/download/7926/PDF
VILLALBA JJ, Provenza FD, Hall JO, Lisonbee LD. Selection of tannins by sheep in response to gastrointestinal nematode infection. Journal of Animal Science. 2010; 88, 2189-2198. doi:10.2527/jas.2009-2272
WEINBERG Z, Chen Y, Khanal P, Pinto R, Zakin V, Sela S. The effect of cattle manure cultivation on moisture content and survival of Escherichia coli. Journal of Animal Science. 2011; 89, 874-881. doi:10.2527/jas.2010-3272
WELLS JE, Berry ED, Varel VH. Effects of common forage phenolic acids on Escherichia coli O157:H7 viability in bovine feces. Applied and Environmental Microbiology. 2005; 72, 7974–7979. doi:10.1128/AEM.71.12.7974–7979.2005