2016, Number 6
<< Back Next >>
Salud Mental 2016; 39 (6)
Las enzimas involucradas en el metabolismo de la cocaína: Una nueva aproximación farmacológica para el tratamiento de la intoxicación por sobredosis de cocaína
Salazar-Juárez A, Barbosa MS, Jurado N, Antón B
Language: Spanish
References: 126
Page: 311-320
PDF size: 391.18 Kb.
ABSTRACT
Introduction
New therapeutic strategies against cocaine overdose toxicity have
been developed. These new approaches are based on the design and
synthesis of proteins involved in the destruction of cocaine before it
has a chance to penetrate nerve tissue.
Objective
To review the progress in the effect of the increase in the catalytic
activity of BChE and hCE enzymes produced for the treatment of patients
in cocaine overdose toxicity conditions in order to determine the
advantages and disadvantages of its use. Its potential future use in
patients channeled by a cocaine overdose is also explored.
ethod
A bibliographic search was conducted using PubMed; descriptors
were “
cocaine”, “
hydrolase”, “
esterase” and “
butyrylcholinesterase”.
220 papers were obtained and 126 papers were used for these review.
Results
The BChE, COCH and Coce bacterial enzymes significantly decrease
the levels of cocaine in blood and brain and thereby attenuate the
effects of a cocaine overdose.
Discussion and conclusion
The results obtained in animal models suggest the potential therapeutic
use of these enzymes in humans to rapidly inactivate cocaine and
develop treatments to stop deaths associated with cocaine overdose
intoxication. These enzymatic approaches offer a novel therapeutic
application to treat cocaine overdose.
REFERENCES
Fulco CE, Liverman CT, Earley LE editores. Development of medications for the treatment of opiate and cocaine addictions: Issues for the government and private sector, Washington, DC. National Academies Press; 1995.
Skolnick P. Biologic approaches to treat substance-use disorders. Trends Pharmacol Sci 2015;36(10):628-635.
Zalewska-Kaszubska J. Is immunotherapy an opportunity for effective treatment of drug addiction? Vaccine 2015;33(48):6545-6551.
Lockridge O. Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharmacol Ther 2015; 148(1):34-46.
Shorter D, Kosten TR. Novel pharmacotherapeutic treatments for cocaine addiction. BMC Med 2011;9(1):119.
Shorter D, Domingo CB, Kosten TR. Emerging drugs for the treatment of cocaine use disorder: a review of neurobiological targets and pharmacotherapy. Expert Opin Emerg Drugs 2015;20(1):15-29.
Orson FM, Wang R, Brimijoin S, Kinsey BM et al. The future potential for cocaine vaccines. Expert Opin Biol Ther 2014;14(9):1271-1283.
Brimijoin S, Shen X, Orson F, Kosten T. Prospects, promise and problems on the road to effective vaccines and related therapies for substance abuse. Expert Rev Vaccines 2013;12(3):323-332.
Brimijoin S. Interception of cocaine by enzyme or antibody delivered with viral gene transfer: a novel strategy for preventing relapse in recovering drug users. CNS Neurol Disord Drug Targets 2011;10(8):880-891.
Schindler CW, Goldberg SR. Accelerating cocaine metabolism as an approach to the treatment of cocaine abuse and toxicity. Future Med Chem 2012;4(2):163-175.
Zheng F, Zhan CG. Rational design of an enzyme mutant for anti-cocaine therapeutics. J Comput Aided Mol Des 2008;22(9):661-671.
Martins SS, Sampson L, Cerdá M, Galea S. Worldwide prevalence and trends in unintentional drug overdose: A systematic review of the literature. Am J Public Health 2015;105(11):e29-e49.
Bosron WF, Hurley TD. Lessons from a bacterial cocaine esterase. Nat Struct Biol 2002;9(1):4-5.
De Prada P, Winger G, Landry DW. Application of artificial enzymes to the problem of cocaine. Ann N Y Acad Sci 2000;909(1):159-169.
Rogers CJ, Eubanks LM, Dickerson TJ, Janda KD. Unexpected acetylcholinesterase activity of cocaine esterases. J Am Chem Soc 2006;128(48):15364-15365.
Turner JM, Larsen NA, Basran A, Barbas CF et al. Biochemical characterization and structural analysis of a highly proficient cocaine esterase. Biochemistry 2002;41(41):12297-12307.
Boeck AT, Schopfer LM, Lockridge O. DNA sequence of butyrylcholinesterase from the rat: expression of the protein and characterization of the properties of rat butyrylcholinesterase. Biochem Pharmacol 2002;63(12):2101-2110.
Gatley SJ. Activities of the enantiomers of cocaine and some related compounds as substrates and inhibitors of plasma butyrylcholinesterase. Biochem Pharmacol 1991;41(8):1249-1254.
Jbilo O, Bartels CF, Chatonnet A, Toutant JP et al. Tissue distribution of human acetylcholinesterase and butyrylcholinesterase messenger RNA. Toxicon 1994;32(11):1445-1457.
Gatley SJ, MacGregor RR, Fowler JS, Wolf AP et al. Rapid stereoselective hydrolysis of (+)-cocaine in baboon plasma prevents its uptake in the brain: implications for behavioral studies. J Neurochem 1990;54(2):720-723.
Loewenstein-Lichtenstein Y, Glick D, Gluzman N, Sternfeld M et al. Overlapping drug interaction sites of human butyrylcholi nesterase dissected by site-directed mutagenesis. Mol Pharmacol 1996;50(6):1423-1431.
Zhan CG, Zheng F, Landry DW. Fundamental reaction mechanism for cocaine hydrolysis in human butyrylcholinesterase. J Am Chem Soc 2003;125(9):2462-2474.
Zhan CG, Deng SX, Skiba JG, Hayes BA et al. First-principle studies of intermolecular and intramolecular catalysis of protonated cocaine. J Comput Chem 2005;26(10):980-986.
Gorelick DA. Enhancing cocaine metabolism with butyrylcholinesterase as a treatment strategy. Drug Alcohol Depend 1997;48(3):159-165.
Lynch TJ, Mattes CE, Singh A, Bradley RM et al. Cocaine detoxification by human plasma butyrylcholinesterase. Toxicol Appl Pharmacol 1997;145(2):363-371.
Mattes CE, Lynch TJ, Singh A, Bradley RM et al. Therapeutic use of butyrylcholinesterase for cocaine intoxication. Toxicol Appl Pharmacol 1997; 45(2):372-380.
Morell V. Enzyme may blunt cocaine’s action. Science 1993;259(5103):1828.
Schwarz M, Glick D, Loewenstein Y, Soreq H. Engineering of human cholinesterases explains and predicts diverse consequences of administration of various drugs and poisons. Pharmacol Ther 1995;67(2):283-322.
Erzouki HK, Baum I, Goldberg SR, Schindler CW. Comparison of the effects of cocaine and its metabolites on cardiovascular function in anesthetized rats. J Cardiovasc Pharmacol 1993;22(4):557-563.
Madden JA, Powers RH. Effect of cocaine and cocaine metabolites on cerebral arteries in vitro. Life Sci 1990;47(13):1109-1114.
Konkol RJ, Erickson BA, Doerr JK, Hoffman RG et al. Seizures induced by the cocaine metabolite benzoylecgonine in rats. Epilepsia 1992;33(3):420-427.
Ndikum-Moffor FM, Schoeb TR, Roberts SM. Liver toxicity from norcocaine nitroxide, an N-oxidative metabolite of cocaine. J Pharmacol Exp Ther 1998;284(1):413-419.
Rauckman EJ, Rosen GM, Cavagnaro J. Norcocaine nitroxide. A potential hepatotoxic metabolite of cocaine. Mol Pharmacol 1982;21(2):458- 463.
Carmona GN, Schindler CW, Greig NH, Holloway HW et al. Intravenous butyrylcholinesterase administration and plasma and brain levels of cocaine and metabolites in rats. Eur J Pharmacol 2005;517(3):186- 190.
Zhan CG, Gao D. Catalytic mechanism and energy barriers for butyrylcholinesterase- catalyzed hydrolysis of cocaine. Biophys J. 2005; 89(6):3863-3872.
Zheng F, Zhan CG. Recent progress in protein drug design and discovery with a focus on novel approaches to the development of anti-cocaine medications. Future Med Chem. 2009;1(3):515-528.
Brimijoin S, Gao Y. Cocaine hydrolase gene therapy for cocaine abuse. Future Med Chem 2012;4(2):151-162.
Dimov D, Kanev K, Dimova I. Correlation between butyrylcholinesterase variants and sensitivity to soman toxicity. Acta Biochim Pol 2012;59(2):313-316.
Negrão AB, Pereira AC, Guindalini C, Santos HC, Messas GP, Laranjeira R, Vallada H. Butyrylcholinesterase genetic variants: association with cocaine dependence and related phenotypes. PLoS One 2013;8(11):e80505.
Devenyi P. Cocaine complications and pseudocholinesterase. Ann Intern Med 1989;110(2):167-168.
Hoffman RS, Henry GC, Howland MA, Weisman RS, Weil L, Goldfrank LR. Association between life-threatening cocaine toxicity and plasma cholinesterase activity. Ann Emerg Med 1992;21(3):247-253.
Hoffman RS, Henry GC, Wax PM, Weisman RS, Howland MA, Goldfrank LR. Decreased plasma cholinesterase activity enhances cocaine toxicity in mice. J Pharmacol Exp Ther 1992;263(2):698-702.
Liddell J, Lehmann H, Silk E. A ‘silent’ pseudo-cholinesterase gene. Nature 1962;193(2):561-562.
Manoharan I, Boopathy R, Darvesh S, Lockridge O. A medical health report onindividuals with silent butyrylcholinesterase in the Vysya community of India. Clin Chim Acta. 2007; 378(1):128-135.
Jatlow P, Barash PG, Van Dyke C, Radding J, Byck R. Cocaine and succinylcholine sensitivity: a new caution. Anesth Analg 1979;58(3):235- 238.
Stewart DJ, Inaba T, Lucassen M, Kalow W. Cocaine metabolism: cocaine and norcocaine hydrolysis by liver and serum esterases. Clin Pharmacol Ther 1979;25(4):464-468.
Goedde HW, Altland K. Evidence for different “silent genes” in the human serum pseudocholinesterase polymorphism. Ann N Y Acad Sci 1968;151(1):540-544.
Klose R, Gutensohn G. Treatment of alkyl phosphate poisoning with purified serum cholinesterase. Prakt Anaesth 1976;11(1):1-7.
Duysen EG, Li B, Lockridge O. The butyrylcholinesterase knockout mouse a research tool in the study of drug sensitivity, bio-distribution, obesity and Alzheimer’s disease. Expert Opin Drug Metab Toxicol 2009;5(5):523-528.
Duysen EG, Lockridge O. Prolonged toxic effects after cocaine challenge in butyrylcholinesterase/plasma carboxylesterase double knockout mice: a model for butyrylcholinesterase-deficient humans. Drug Metab Dispos 2011;39(8):1321-1323.
Ralph EC, Xiang L, Cashman JR, Zhang J. His-tag truncated butyrylcholinesterase as a useful construct for in vitro characterization of wild-type and variant butyrylcholinesterases. Protein Expr Purif 2011;80(1):22-27.
Carmona GN, Jufer RA, Goldberg SR, Gorelick DA et al. Butyrylcholinesterase accelerates cocaine metabolism: in vitro and in vivo effects in nonhuman primates and humans. Drug Metab Dispos 2000;28(3):367-371.
Mattes C, Bradley R, Slaughter E, Browne S. Cocaine and butyrylcholinesterase (BChE): determination of enzymatic parameters. Life Sci 1996;58(13):PL257-261.
Browne SP, Slaughter EA, Couch RA, Rudnic EM et al. The influence of plasma butyrylcholinesterase concentration on the in vitro hydrolysis of cocaine in human plasma. Biopharm Drug Dispos 1998;19(5):309-314.
Carmona GN, Baum I, Schindler CW, Goldberg SR et al. Plasma butyrylcholinesterase activity and cocaine half-life differ significantly in rhesus and squirrel monkeys. Life Sci 1996;59(11):939-943.
Carmona GN, Schindler CW, Shoaib M, Jufer R et al. Attenuation of cocaine-induced locomotor activity by butyrylcholinesterase. Exp Clin Psychopharmacol 1998;6(3):274-279.
Brimijoin S, Shen ML, Sun H. Radiometric solvent-partitioning assay for screening cocaine hydrolases and measuring cocaine levels in milligram tissue samples. Anal Biochem 2002;309(2):200-205.
Koetzner L, Woods JH. Characterization of butyrylcholinesterase antagonism of cocaine-induced hyperactivity. Drug Metab Dispos 2002;30(6):716-723.
Koetzner L, Woods JH. Characterization of equine butyrylcholinesterase disposition in the mouse. Drug Metab Dispos 2002;30(6):724-730.
Sáez-Valero J, de Gracia JA, Lockridge O. Intraperitoneal administration of 340 kDa human plasma butyrylcholinesterase increases the level of the enzyme in the cerebrospinal fluid of rats. Neurosci Lett 2005;383(1):93-98. Epub 2005 Apr 12.
Brimijoin S, Gao Y, Anker JJ, Gliddon LA et al. A cocaine hydrolase engineered from human butyrylcholinesterase selectively blocks cocaine toxicity and reinstatement of drug seeking in rats. Neuropsychopharmacology 2008;33(11):2715-2725.
Carroll ME, Gao Y, Brimijoin S, Anker JJ. Effects of cocaine hydrolase on cocaine self-administration under a PR schedule and during extended access (escalation) in rats. Psychopharmacology (Berl) 2011;213(4):817-829.
Schindler CW, Justinova Z, Lafleur D, Woods D et al. Modification of pharmacokinetic and abuse-related effects of cocaine by human-derived cocaine hydrolase in monkeys. Addict Biol 2013;18(1):30-39.
Zlebnik NE, Brimijoin S, Gao Y, Saykao AT et al. Long-term reduction of cocaine self-administration in rats treated with adenoviral vector-delivered cocaine hydrolase: Evidence for enzymatic activity. Neuropsychopharmacology 2014;39(6):1538-1546.
Collins GT, Carey KA, Narasimhan D, Nichols J et al. Amelioration of the cardiovascular effects of cocaine in rhesus monkeys by a long-acting mutant form of cocaine esterase. Neuropsychopharmacology 2011;36(5):1047-1059.
Collins GT, Zaks ME, Cunningham AR, St Clair C et al. Effects of a long-acting mutant bacterial cocaine esterase on acute cocaine toxicity in rats. Drug Alcohol Depend 2011;118(2):158-165.
Lockridge O, Schopfer LM, Winger G, Woods JH. Large scale purification of butyrylcholinesterase from human plasma suitable for injection into monkeys; a potential new therapeutic for protection against cocaine and nerve agent toxicity. J Med Chem Biol Radiol Def 2005 Jul 1;3:nihms5095.
Gao Y, LaFleur D, Shah R, Zhao Q et al. An albumin-butyrylcholinesterase for cocaine toxicity and addiction: catalytic and pharmacokinetic properties. Chem Biol Interact 2008;175(1):83-87.
Berkman CE, Underiner GE, Cashman JR. Stereoselective inhibition of human butyrylcholinesterase by phosphonothiolate analogs of (+)- and (-)-cocaine. Biochem Pharmacol 1997;54(11):1261-1266.
Visalli T, Turkall R, Abdel-Rahman MS. Plasma butyrylcholinesterase activity protects against cocaine hepatotoxicity in female mice. Toxicol Mech Methods 2005;15(6):383-389.
Fang L, Hou S, Xue L, Zheng F et al. Amino-acid mutations to extend the biological half-life of a therapeutically valuable mutant of human butyrylcholinesterase. Chem Biol Interact 2014;214(1):18-25.
Hamza A, Cho H, Tai HH, Zhan CG. Molecular dynamics simulation of cocaine binding with human butyrylcholinesterase and its mutants. J Phys Chem B 2005;109(10):4776-4782.
Pan Y, Gao D, Yang W, Cho H et al. Free energy perturbation (FEP) simulation on the transition states of cocaine hydrolysis catalyzed by human butyrylcholinesterase and its mutants. J Am Chem Soc 2007;129(44):13537-13543.
Duysen EG, Bartels CF, Lockridge O. Wild-type and A328W mutant human butyrylcholinesterase tetramers expressed in Chinese hamster ovary cells have a 16-hour half-life in the circulation and protect mice from cocaine toxicity. J Pharmacol Exp Ther 2002;302(2):751-758.
Xie W, Altamirano CV, Bartels CF, Speirs RJ et al. An improved cocaine hydrolase: the A328Y mutant of human butyrylcholinesterase is 4-fold more efficient. Mol Pharmacol 1999;55(1):83-91.
Zheng F, Yang W, Ko MC, Liu J et al. Most efficient cocaine hydrolase designed by virtual screening of transition states. J Am Chem Soc 2008;130(6):12148-12155.
Zheng F, Zhan CG. Structure-and-mechanism-based design and discovery of therapeutics for cocaine overdose and addiction. Org Biomol Chem 2008;6(5):836-843.
Zheng F, Yang W, Xue L, Hou S et al. Design of high-activity mutants of human butyrylcholinesterase against (-)-cocaine: structural and energetic factors affecting the catalytic efficiency. Biochemistry 2010;49(42):9113-9119.
Zheng F, Xue L, Hou S, Liu J et al. A highly efficient cocaine-detoxifying enzyme obtained by computational design. Nat Commun 2014;5:3457.
Zheng F, Zhan M, Huang X, Abdul Hameed MD et al. Modeling in vitro inhibition of butyrylcholinesterase using molecular docking, multi- linear regression and artificial neural network approaches. Bioorg Med Chem 2014;22(1):538-549.
Huang X, Pan Y, Zheng F, Zhan CG. Reaction pathway and free energy profile for prechemical reaction step of human butyrylcholinesterase- catalyzed hydrolysis of (-)-cocaine by combined targeted molecular dynamics and potential of mean force simulations. J Phys Chem B 2010;114(42):13545-13554.
Huang X, Zheng F, Zhan CG. Human butyrylcholinesterase-cocaine binding pathway and free energy profiles by molecular dynamics and potential of mean force simulations. J Phys Chem B 2011;115(38):11254- 11260.
Mikami LR, Wieseler S, Souza RL, Schopfer LM et al. Five new naturally occurring mutations of the BCHE gene and frequencies of 12 butyrylcholinesterase alleles in a Brazilian population. Pharmacogenet Genomics 2008;18(3):213-218.
Hou S, Xue L, Yang W, Fang L et al. Substrate selectivity of high-activity mutants of human butyrylcholinesterase. Org Biomol Chem 2013;11(43):7477-7485.
Yang W, Pan Y, Fang L, Gao D et al. Free energy perturbation simulation on transition states and high-activity mutants of human butyrylcholinesterase for (-)-cocaine hydrolysis. J Phys Chem B 2010;114(33):10889-10896.
Yang W, Xue L, Fang L, Chen X et al. Characterization of a high-activity mutant of human butyrylcholinesterase against (-)-cocaine. Chem Biol Interact 2010;187(1-3):148-152.
Gao Y, Brimijoin S. Lasting reduction of cocaine action in neostriatum— a hydrolase gene therapy approach. J Pharmacol Exp Ther 2009;330(2):449-457.
Zhan M, Hou S, Zhan CG, Zheng F. Kinetic characterization of high- activity mutants of human butyrylcholinesterase for the cocaine metabolite norcocaine. Biochem J 2014;457(1):197-206.
Gao Y, Brimijoin S. An engineered cocaine hydrolase blunts and reverses cardiovascular responses to cocaine in rats. J Pharmacol Exp Ther 2004;310(3):1046-1052.
Sun H, Pang YP, Lockridge O, Brimijoin S. Re-engineering butyrylcholinesterase as a cocaine hydrolase. Mol Pharmacol 2002;62(2):220- 224.
Sun H, Shen ML, Pang YP, Lockridge O et al. Cocaine metabolism accelerated by a re-engineered human butyrylcholinesterase. J Pharmacol Exp Ther 2002;302(2):710-716.
Xue L, Ko MC, Tong M, Yang W et al. Design, preparation, and characterization of high-activity mutants of human butyrylcholinesterase specific for detoxification of cocaine. Mol Pharmacol 2011;79(2):290- 297.
Xue L, Hou S, Tong M, Fang L et al. Preparation and in vivo characterization of a cocaine hydrolase engineered fromhuman butyrylcholinesterase for metabolizing cocaine. Biochem J 2013;453(3):447-454.
Ko MC, Narasimhan D, Berlin AA, Lukacs NW et al. Effects of cocaine esterase following its repeated administration with cocaine in mice. Drug Alcohol Depend 2009;101(3):202-209.
Narasimhan D, Woods JH, Sunahara RK. Bacterial cocaine esterase: a protein-based therapy for cocaine overdose and addiction. Future Med Chem 2012;4(2):137-150.
Ascenzi P, Clementi E, Polticelli F. The Rhodococcus sp. cocaine esterase: a bacterial candidate for novel pharmacokinetic-based therapies for cocaine abuse. IUBMB Life 2003;55(7):397-402.
Cooper ZD, Narasimhan D, Sunahara RK, Mierzejewski P et al. Rapid and robust protection against cocaine-induced lethality in rats by the bacterial cocaine esterase. Mol Pharmacol 2006;70(6):1885-1891.
Collins GT, Brim RL, Narasimhan D, Ko MC et al. Cocaine esterase prevents cocaine-induced toxicity and the ongoing intravenous self-administration of cocaine in rats. J Pharmacol Exp Ther 2009;331(2):445-455.
Brim RL, Noon KR, Collins GT, Stein A et al. The fate of bacterial cocaine esterase (CocE): an in vivo study of CocE-mediated cocaine hydrolysis, CocE pharmacokinetics, and CocE elimination. J Pharmacol Exp Ther 2012;340(1):83-95.
Ko MC, Bowen LD, Narasimhan D, Berlin AA et al. Cocaine esterase: interactions with cocaine and immune responses in mice. J Pharmacol Exp Ther 2007;320(2):926-933.
Fang L, Chow KM, Hou S, Xue L et al. Rational design, preparation, and characterization of a therapeutic enzyme mutant with improved stability and function for cocaine detoxification. ACS Chem Biol 2014;9(8):1764-1772.
Narasimhan D, Nance MR, Gao D, Ko MC et al. Structural analysis of thermostabilizing mutations of cocaine esterase. Protein Eng Des Sel 2010;23(7):537-547.
Gao Y, Brimijoin S. Visualizing viral transduction of a cocaine-hydrolyzing, human butyrylcholinesterase in rats. Chem Biol Interact 2005;157-158(1):97-103.
Collins GT, Narasimhan D, Cunningham AR, Zaks ME et al. Long-lasting effects of a PEGylated mutant cocaine esterase (CocE) on the reinforcing and discriminative stimulus effects of cocaine in rats. Neuropsychopharmacology 2012;37(5):1092-1103.
Collins GT, Brim RL, Noon KR, Narasimhan D et al. Repeated administration of a mutant cocaine esterase: effects on plasma cocaine levels, cocaine-induced cardiovascular activity, and immune responses in rhesus monkeys. J Pharmacol Exp Ther 2012;342(1):205-213.
Gao Y, Atanasova E, Sui N, Pancook JD et al. Gene transfer of cocaine hydrolase suppresses cardiovascular responses to cocaine in rats. Mol Pharmacol 2005;67(1):204-211.
Larrimore KE, Barcus M, Kannan L, Gao Y et al. Plants as a source of butyrylcholinesterase variants designed for enhanced cocaine hydrolase activity. Chem Biol Interact 2013;203(1):217-220.
Chen X, Huang X, Geng L, Xue L et al. Kinetic characterization of a cocaine hydrolase engineered from mouse butyrylcholinesterase. Biochem J 2015;466(2):243-251.
Hou S, Zhan M, Zheng X, Zhan CG et al. Kinetic characterization of human butyrylcholinesterase mutants for the hydrolysis of cocaethylene. Biochem J 2014;460(3):447-457.
Chilukuri N, Duysen EG, Parikh K, Sun W et al. Adenovirus-mediated gene transfer of human butyrylcholinesterase results in persistent high- level transgene expression in vivo. Chem Biol Interact 2008;175(1- 3):327-331.
Gao Y, Brimijoin S. Viral transduction of cocaine hydrolase in brain reward centers. Cell Mol Neurobiol 2006;26(4):357-363.
Brimijoin S, Orson F, Kosten TR, Kinsey B et al. Anti-cocaine antibody and butyrylcholinesterase-derived cocaine hydrolase exert cooperative effects on cocaine pharmacokinetics and cocaine-induced locomotor activity in mice. Chem Biol Interact 2013;203(1):212-216.
Gao Y, Geng L, Orson F, Kinsey B et al. Effects of anti-cocaine vaccine and viral gene transfer of cocaine hydrolase in mice on cocaine toxicity including motor strength and liver damage. Chem Biol Interact 2013;203(1):208-211.
Geng L, Gao Y, Chen X, Hou S et al. Gene transfer of mutant mouse cholinesterase provides high lifetime expression and reduced cocaine responses with no evident toxicity. PLoS One 2013;8(6):e67446.
Murthy V, Gao Y, Geng L, Lebrasseur N et al. Preclinical studies on neurobehavioral and neuromuscular effects of cocaine hydrolase gene therapy in mice. J Mol Neurosci 2014;53(3):409-416.
Anker JJ, Brimijoin S, Gao Y, Geng L et al. Cocaine hydrolase encoded in viral vector blocks the reinstatement of cocaine seeking in rats for 6 months. Biol Psychiatry 2012;71(8):700-705.
Dickerson TJ, Kaufmann GF, Janda KD. Bacteriophage-mediated protein delivery into the central nervous system and its application in immunopharmacotherapy. Expert Opin Biol Ther 2005;5(6):773-781.
Howell LL, Nye JA, Stehouwer JS, Voll RJ et al. A thermostable bacterial cocaine esterase rapidly eliminates cocaine from brain in nonhuman primates. Transl Psychiatry 2014;4:e407.
Murthy V, Geng L, Gao Y, Zhang B et al. Reward and toxicity of cocaine metabolites generated by cocaine hydrolase. Cell Mol Neurobiol 2015;35(6): 819-826.
Carroll ME, Zlebnik NE, Anker JJ, Kosten TR et al. Combined cocaine hydrolase gene transfer and anti-cocaine vaccine synergistically block cocaine-induced locomotion. PLoS One 2012;7(8):e43536.
Connors NJ, Hoffman RS. Experimental treatments for cocaine toxicity: a difficult transition to the bedside. J Pharmacol Exp Ther 2013;347(2):251-257.
Askalsky P, Kalapatapu RK, Foltin RW, Comer SD. Butyrylcholinesterase levels and subjective effects of smoked cocaine in healthy cocaine users. Am J Drug Alcohol Abuse 2015;41(2):161-165.
Lockridge O. Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharmacol Ther 2015;148(1):34-46.
Murthy V, Gao Y, Geng L, LeBrasseur NK et al. Physiologic and metabolic safety of butyrylcholinesterase gene therapy in mice. Vaccine 2014;32(33):4155-4162.
Cohen-Barak O, Wildeman J, van de Wetering J, Hettinga J et al. Safety, pharmacokinetics, and pharmacodynamics of TV-1380, a novel mutated butyrylcholinesterase treatment for cocaine addiction, after single and multiple intramuscular injections in healthy subjects. J Clin Pharmacol 2015;55(5):573-583.
Shram MJ, Cohen-Barak O, Chakraborty B, Bassan M et al. Assessment of pharmacokinetic and pharmacodynamic interactions between albumin-fused mutated butyrylcholinesterase and intravenously administered cocaine in recreational cocaine users. J Clin Psychopharmacol 2015;35(4):396-405.