2016, Number 5
<< Back Next >>
Rev Mex Neuroci 2016; 17 (5)
Spatial alternation: the T-maze, their procedures and processes
Aguayo-Del Castillo A, Sánchez-Castillo H, Casasola-Castro C
Language: Spanish
References: 61
Page: 36-48
PDF size: 492.88 Kb.
ABSTRACT
Spatial mazes associated with spatial alternation or conditional
election tasks has been widely used in psychology and more recently
in neurosciences as strong tools for the study of animal behavior
and cognition, particularly in the field of learning and memory. This
article provides a briefly review of the use of the T-maze in behavioral
research, especially in relation to spatial alternation and memory. On
this review highlights the use for over than a century of the spatial
mazes in the scientific research as well as the development of a wide
variety of forms, protocols and procedures. This review presents
evidence about the strategies to perform the task, the memory
process involved and the brain structures related, among these the
hippocampus, entorhinal cortex, striatum and medial frontal cortex.
REFERENCES
Small WS. Experimental study of the mental processes of the rat. II. Am J Psychol. 1901;12(2):206- 239.
Tolman EC. Purpose and cognition: the determiners of animal learning. Psychol Rev. 1925;32(4):285-297.
Morris RG. Spatial localization does not require the presence of local cues. Learn Motiv. 1981;12:239-260.
Barnes CA. Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J Comp Physiol Psychol. 1979;93(1):74-104.
Olton DS, Samuelson RJ. Remembrance of places passed: spatial memory in rats. J Exp Psychol Anim Behav Process. 1976;2:97-116.
van Swinderen B. The aversive phototaxic suppression assay for individual adult Drosophila. Cold Spring Harb Protoc. 2011;2011(10): 1203-1205.
Byrne RA, Kuba MJ, Meisel DV, Griebel U, Mather JA. Does Octopus vulgaris have preferred arms? J Comp Psychol. 2006;120(3):198-204.
Brown CP. Two types of habituation in chicks: differential dependence on cholinergic activity. Pharmacol Biochem Behav. 1976;4(3):235-238.
Frederickson CJ, Frederickson MH. Emergence of spontaneous alternation in the kitten. Dev Psychobiol. 1979;12(6):615-621.
Prusky GT, Harker KT, Douglas RM, Whishaw IQ. Variation in visual acuity within pigmented, and between pigmented and albino rat strains. Behav Brain Res. 2002;136(2):339-348.
Spangler EL, Rigby P, Ingram DK. Scopolamine impairs learning performance of rats in a 14-unit T-maze. Pharmacol Biochem Behav. 1986;25(3):673-679.
Viana MB, Tomaz C, Graeff FG. The elevated T-maze: a new animal model of anxiety and memory. Pharmacol Biochem Behav. 1994;49(3):549-554.
Khalki L, Bennis M, Sokar Z, Ba-M’hamed S. The developmental neurobehavioral effects of fenugreek seeds on prenatally exposed mice. J Ethnopharmacol. 2012;139(2):672-677.
Lalonde R. The neurobiological basis of spontaneous alternation. Neurosci Biobehav Rev. 2002;26 (1):91-104.
Deacon RM, Rawlins JN. T-maze alternation in the rodent. Nat Protoc. 2006;1(1):7-12.
Sharma S, Rakoczy S, Brown-Borg H. Assessment of spatial memory in mice. Life Sci. 2010;87(17- 18):521-536.
Dember WN, Earl RW. Analysis of exploratory, manipulatory, and curiosity behaviors. Psychol Rev. 1957;64(2):91-96.
Dudchenko PA. An overview of the tasks used to test working memory in rodents. Neurosci Biobehav Rev. 2004;28(7):699-709.
Dember WN, Kleinman R. Cues for spontaneous alternation by gerbils. Anim Learn Behav. 1973;1(4):287-289.
Douglas RJ. The development of hippocampal function: Implications for theory and therapy. En R. L. Isaacson, K. H. Pribram (Eds), The hippocampus: Vol. 2 (pp. 327-362). New York: Plenum Press; 1975.
Griffin AL, Owens CB, Peters GJ, Adelman PC, Cline KM. Spatial representations in dorsal hippocampal neurons during a tactile-visual conditional discrimination task. Hippocampus. 2012;22(2):299-308.
Hallock HL, Griffin AL. Dynamic coding of dorsal hippocampal neurons between tasks that differ in structure and memory demand. Hippocampus. 2013;23(2):169-186.
Ainge JA, Tamosiunaite M, Wörgötter F, Dudchenko PA. Hippocampal place cells encode intended destination, and not a discriminative stimulus, in a conditional T-maze task. Hippocampus. 2012;22(3):534-543.
Locchi F, Dall’Olio R, Gandolfi O, Rimondini R. Water T-maze, an improved method to assess spatial working memory in rats: Pharmacological validation. Neurosci Lett. 2007;422(3):213-216.
Bannerman DM, Yee BK, Lemaire M, Wilbrecht L, Jarrard L, Iversen SD, Rawlins JN, Good MA. The role of the entorhinal cortex in two forms of spatial learning and memory. Exp Brain Res. 2001;141(3):281-303.
Moran PM. Differential effects of scopolamine and mecamylamine on working and reference memory in the rat. Pharmacol Biochem Behav. 1993;45(3):533-538.
Gerlai R. A new continuous alternation task in T-maze detects hippocampal dysfunction in mice. A strain comparison and lesion study. Behav Brain Res. 1998;95(1):91-101.
Robitsek RJ, White JA, Eichenbaum H. Place cell activation predicts subsequent memory. Behav Brain Res. 2013;254:65-72.
Wood ER, Dudchenko PA, Robitsek RJ, Eichenbaum H. Hippocampal neurons encode information about different types of memory episodes occurring in the same location. Neuron. 2000;27(3):623- 633.
Dember WN, Fowler H. Spontaneous alternation behavior. Psychol Bull. 1958;55(6):412-428.
Dember WN, Fowler H. Spontaneous alteration after free and forced trials. Can J Psychol. 1959;13:151-154.
Hughes RN. The value of spontaneous alternation behavior (SAB) as a test of retention in pharmacological investigations of memory. Neurosci Biobehav Rev. 2004;28(5):497-505.
Wenk G, Hughey D, Boundy V, Kim A, Walker L, Olton D. Neurotransmitters and memory: role of cholinergic, serotonergic, and noradrenergic systems. Behav Neurosci. 1987;101(3):325-332.
Richman CL, Dember WN, Kim P. Spontaneous alternation behavior in animals: A review. Current Psychology. 1986;5(4):358-391.
Whishaw IQ, Coles BL, Bellerive CH. Food carrying: a new method for naturalistic studies of spontaneous and forced alternation. J Neurosci Methods. 1995;61(1-2):139-143.
Zhang XH, Liu SS, Yi F, Zhuo M, Li BM. Delay-dependent impairment of spatial working memory with inhibition of NR2B-containing NMDA receptors in hippocampal CA1 region of rats. Mol Brain. 2013;6:13.
Bertholet JY, Crusio WE. Spatial and non-spatial spontaneous alternation and hippocampal mossy fibre distribution in nine inbred mouse strains. Behav Brain Res. 1991;43(2):197-202.
Packard MG. Anxiety, cognition, and habit: a multiple memory systems perspective. Brain Res. 2009;1293:121-128.
McIntyre CK, Marriott LK, Gold PE. Patterns of brain acetylcholine release predict individual differences in preferred learning strategies in rats. Neurobiol Learn Mem. 2003;79(2):177-183.
Montgomery KC. “Spontaneous alternation” as a function of time between trials and amount of work. J Exp Psychol. 1951;42(2):82-93.
Egger GJ, Livesey PJ, Dawson RG. Ontogenetic aspects of central cholinergic involvement in spontaneous alternation behavior. Dev Psychobiol. 1973;6(4):289-299.
Deacon RM, Penny C, Rawlins JN. Effects of medial prefrontal cortex cytotoxic lesions in mice. Behav Brain Res. 2003;139(1-2):139-155.
Hull CL. Principles of behavior. USA, New York: Appleton-Century-Crofts, 1943.
Douglas RJ. Cues for spontaneous alternation. J Comp Physiol Psychol. 1966;62(2):171-183.
Tolman EC. Cognitive maps in rats and men. Psychol Rev. 1948;55(4):189-208.
Wills TJ, Cacucci F, Burgess N, O’Keefe J. Development of the hippocampal cognitive map in preweanling rats. Science. 2010;328(5985):1573-1576.
Packard MG, McGaugh JL. Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiol Learn Mem. 1996;65(1):65-72.
Packard MG, Hirsh R, White NM. Differential effects of fornix and caudate nucleus lesions on two radial maze tasks: evidence for multiple memory systems. J Neurosci. 1989;9(5):1465-1472.
Kesner RP, Gilbert PE. The role of the medial caudate nucleus, but not the hippocampus, in a matching-to sample task for a motor response. Eur J Neurosci. 2006;23(7):1888-1894.
Stanton ME. Multiple memory systems, development and conditioning. Behavioral Brain Research. 2000;110:25-37.
Dumas TC. Early eyelid opening enhances spontaneous alternation and accelerates the development of perforant path synaptic strength in the hippocampus of juvenile rats. Dev Psychobiol. 2004;45(1):1-9.
O’Keefe J, Conway DH. Hippocampal place units in the freely moving rat: why they fire where they fire. Exp Brain Res. 1978;31(4):573-590.
O’Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-movingrat. Brain Res. 1971;34(1):171-175.
Langston RF, Ainge JA, Couey JJ, Canto CB, Bjerknes TL, Witter MP, Moser EI, Moser MB. Development of the spatial representation system in the rat. Science. 2010;328(5985):1576-1580.
O’Keefe J, Burgess N. Dual phase and rate coding in hippocampal place cells: theoretical significance and relationship to entorhinal grid cells. Hippocampus. 2005;15(7):853-866.
Martin PD, Berthoz A. Development of spatial firing in the hippocampus of young rats. Hippocampus. 2002;12(4):465-480.
Dias R, Aggleton JP. Effects of selective excitotoxic prefrontal lesions on acquisition of nonmatchingand matching-to-place in the T-maze in the rat: differential involvement of the prelimbicinfralimbic and anterior cingulate cortices in providing behavioural flexibility. Eur J Neurosci. 2000;12(12):4457-4466.
Di Scala G, Meneses S, Brailowsky S. Chronic infusions of GABA into the medial frontal cortex of the rat induce a reversible delayed spatial alternation deficit. Behav Brain Res. 1990;40(1):81-84.
Anisman H, Kokkinidis L. Effects of scopolamine, d-amphetamine and other drugs affecting catecholamines on spontaneous alternation and locomotor activity in mice. Psychopharmacologia (Berl). 1975;45(1):55-63.
Asin KE, Fibiger HC. Spontaneous and delayed spatial alternation following damage to specific neuronal elements within the nucleus medianus raphe. Behav Brain Res. 1984;13(3):241-250.
Einat H, Szechtman H. Perseveration without hyperlocomotion in a spontaneous alternation task in rats sensitized to the dopamine agonist quinpirole. Physiol Behav. 1995;57(1):55-59.