2016, Number 4
<< Back Next >>
Revista Cubana de Salud y Trabajo 2016; 17 (4)
Nanotechnology. A proposal for specialized medical examinations and risk prevention in workers exposed to nanoparticles
Martínez RAD, Linares FTM, Ibarra FVEJ
Language: Spanish
References: 14
Page: 62-66
PDF size: 148.16 Kb.
ABSTRACT
Nanotechnology is increasing more and more applications in everyday life on the planet. Also is present both naturally occurring nanoparticles such as involuntary or voluntarily by man-made, and are known adverse effects of health of fullerenes, nanocrystals, nanowires and other structures of nanometric thickness. We must take into account the toxicity and health effects both for its size and the metal that generally gives rise, as well as income, metabolism, excretion and effectiveness of controls. This article aims to offer a proceeding for specialized medical examinations for workers exposed to nanoparticles, as well as some measures to control the risks of exposure in the production and/or use of these substances. Existing ISO standards reviews were made, as well as the routes of entry of nanoparticles into the human body and the possible effects on the health of workers, and taking into account the experience in health and safety of the authors, a protocol is proposed for medical examinations to workers of nanotechnology, which will be validated with those stated in the centers of research that use these products in Cuba and other countries.
REFERENCES
La seguridad y salud en la exposición a nanopartículas. Instituto Riojano de Salud Laboral. Logroño, 2011 [citado 2 May 2015]. Disponible en: www.larioja.org.
Arbulú EP, Delclós J, El trabajo con nanopartículas y los servicios de prevención [Memoria de trabajo de fin de Máster (TFM) en Salud Laboral]. Barcelona: Universidad Pompeu Fabra; 2009.
Approaches to safe nanotechnology. Cincinnati: National Institute for Workers’ Health; 2009.
Strategic plan for NIOSH nanotechnology research and guidance. Cincinnati: National Institute for Workers’ Health; 2009.
Paur HR, Cassee FR, Teeguarden J, Fissan H, Diabate S, Aufderheide M, Kreyling WG, Hänninen O, Kasper G, Riediker M, et al. In vitro cell exposure studies for the assessment of nanoparticle toxicity in the lung—A dialog between aerosol science and biology. J Aerosol Sci. 2011;42:668–92.
Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A. Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radical Bio Med. 2011;51:1872–81.
Hackenberg S, Scherzed A, Technau A, Kessler M,Froelich K, Ginzkey C, Koehler C, Burghartz M, Hagen R, Kleinsasser N. Cytotoxic, genotoxic and pro-inflammatory effects of zinc oxide nanoparticles in human nasal mucosa cells in vitro. Toxicol In Vitro 2011;25:657–63.
Roller M. Carcinogenicity of inhaled nanoparticles. Inhal Toxicol. 2009;21:144–57.
Wilson MR, Foucaud L, Barlow PG, Hutchison GR, Sales J, Simpson RJ, Stone V. Nanoparticle interactions with zinc and iron: Implications for toxicology and inflammation. Toxicol Appl Pharmacol. 2007;225:80–9.
Shvedova AA, Pietroiusti A, Fadeel B, Kagan VE. Mechanisms of carbon nanotube-induced toxicity: Focus on oxidative stress. Toxicol Appl Pharmacol 2012;261:121–33.
Zhu X, Chang Y, Chen Y. Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in daphnia magna. Chemosphere. 2010;78: 209–15.
Lapresta-Fernández A, Fernández A, Blasco J. Cuba: OPS; 2015. Nanoecotoxicity effects of engineered silver and gold nanoparticles in aquatic organisms. Trac Trends Anal Chem. 2012;32:40–59.
Rodríguez J. Plan Regional de Salud de los Trabaja-dores de la Organización Panamericana de la Salud, Taller Nacional de Salud Ocupacional, La Habana, Cuba: OPS; 2015.
Foladoril G, InvernizziII N, La regulación de las nanotecnologías: una mirada desde las diferencias EUA-UE, Vigil Sanit Debate. 2016;4(2):8-20.