2003, Number 2
<< Back Next >>
Arch Cardiol Mex 2003; 73 (2)
Participation of nitric oxide and arachidonic acid metabolites via citochrome-P450 in the regulation of arterial blood pressure
MA Sánchez-Mendoza, SO Martínez-Ayala, JA Hernández-Hernández, L Zúñiga-Sosa, G Pastelín-Hernández, BA Escalante-Acosta
Language: Spanish
References: 25
Page: 98-104
PDF size: 87.05 Kb.
ABSTRACT
Nitric oxide and cytochrome P450 arachidonic acid metabolites participate
in blood pressure regulation. The synthesis of these autacoids leads to
arterial hypertension. However, it is not known whether there is an
interaction between them. Therefore, we studied the modulatory effect
of nitric oxide and cytochrome P450-arachidonic acid metabolites,
their interaction on blood pressure, and the renal content of
cytochrome P450. Male Wistar rats were divided: 1) control, 2)
L-NAME (100 mg/kg/d p.o.), 3) L-NAME + SnCl
2 (10 mg/kg/d i.p.),
and 4) L-NAME + dexamethasone (1 mg/kg/d s.c.). We measured blood
pressure and collected urine and blood
for nitric oxide measurement. NO
2 was quantified by HPLC. Blood
pressure was: control, 97 ± 7 mmHg; L-NAME, 151 ± 4.6 mmHg; L-NAME +
SnCl
2, 133 ± 3 mmHg, and L-NAME + dexamethasone 152 ± 4.5 mmHg. Urine
nitrite concentration was: 1) 1.832 ± 0.32, 2) 1.031± 0.23, 3) 1.616
± 0.33, and 4) 1.244 ± 0.33 mmol/mL, while the concentration in blood
was: 1) 0.293 ± 0.06, 2) 0.150 ± 0.05, 3) 0.373 ± 0.13, and 4) 0.373 ±
0.07 mmol/mL. L-NAME + SnCl2 decreased cytochrome P450 renal content,
and L-NAME + dexamethasone showed a similar response. In conclusion,
both, nitric oxide and CYP-arachidonic acid metabolites play a role in the regulation of blood pressure. Nitric
oxide also partially regulates renal cytochrome
P450 content.
REFERENCES
Needleman P, Turk J, Jakschick BA, Morrison AR, Lefkowith JB: Arachidonic acid metabolism. Annu Rev Biochem 1986; 55: 69-102.
Smith WL: Prostanoid biosynthesis and mechanism of action. Am J Physiol 1992; 263: F181-F191.
Jackson EK, Herzer WA: Angiotensin II/Prostaglandin I2 interactions in spontaneously hypertensive rats. Hypertension 1993; 22: 688-698.
Straudinger R, Escalante BA, Schwartzman ML, Abraham NG: Effects of EETs on 86Rb uptake in renal epithelial cells. J Cell Physiol 1994; 160: 69-74.
Schwartzman M, Falck JR, Yadagiri P, Escalante BA: Metabolism of 20-HETE by cyclooxygenase, formation and identification of novel endothelium dependent vasoconstrictor metabolites. J Biol Chem 1989; 264: 1165-1172.
Rosolowski M, Falck JR, Willerson JT, Campbell WB: Synthesis of lypooxigenase and epoxygenase products of arachidonic acid by normal and stenosed canine coronary arteries. Circ Res 1990; 66: 608-621.
Zou AP, Imig JD, Kaldunski M, Ortiz de Montellano PR, Sui Z, Roman RJ: Inhibition of renal vascular 20-HETE production impairs autoregulation of renal blood flow. Am J Physiol 1994; 266(2Pt2): F275-F282.
Zou AP, Imig JD, Ortiz de Montellano PR, Sui Z, Falck JR, Roman RJ: Effect of P450 omega-hydroxylase metabolites of arachidonic acid on tubuloglomerular feedback. Am J Physiol 1994; 266(6pt2): F934-F941.
Palmer RM, Ferrige AG, Moncada S: Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987; 327(6122): 524-526.
Wink DA, Osawa Y, Darbyshire JF, Jones CR, Eshenaur SC, Nims RW: Inhibition of cytochromes P450 by nitric oxide and a nitric oxide-releasing agent. Arch Biochem Biophys 1993; 300: 115-123.
Alonso-Galicia M, Drummond HA, Reddy KK, Falck JR, Roman RJ: Inhibition of 20-HETE production contributes to the vascular responses to nitric oxide. Hypertension 1997; 29(2): 320-325.
Sánchez-Mendoza A, Hong E, Escalante B: The role of nitric oxide in angiotensin II-induced renal vasoconstriction in renovascular hypertension. J Hypertension 1998; 16(5): 697-703.
El Menyawi I, Looareesuwan S, Knapp S, Thalhammer F, Stoiser B, Burgmann H: Measurement of serum nitrite/nitrate concentrations using high-performance liquid chromatography. J Chromatography B Biomed Sci App 1998; 706(2): 347-351.
Ito O, Alonso-Galicia M, Hoop KA, Roman R: Localization of cytochrome P-450 4A isoformas along the rat nephron. Am J Physiol 1998; 274: F395-F404.
Bradford MM: A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt Biochem 1976; 72: 248-254.
Laniado-Schwartzman M, Abraham NG, Sacerdoti D, Escalante B, McGiff JC: Effect of acute and chronic treatment of tin on blood pressure in spontaneously hypertensive rats. Tonoku J Exp Med 1992; 166(1): 85-91.
Laniado-Schwartzman M, Abraham NG: The renal cytochrome P-450 arachidonic acid system. Pediatr Nephrol 1992; 6(5): 490-498.
Da Silva JL, Tiefenthaler M, Park E, Escalante B, Schwartzman ML, Levere RD, Abraham NG: Tin-mediated heme oxygenase gene activation and cytochrome P450 arachidonate hydroxylase inhibition in spontaneously hypertensive rats. Am J Med Sci 1994; 307(3): 173-181.
Erman A, Hassid A, Baer PG, Nasjletti A: Treatment with dexamethasone Increases glomerular prostaglandin synthesis in rats. J Pharmacol Exper Ther 1994; 739: 296-301.
Lin F, Abraham NG, Schwartzman ML: Cytochrome P450 arachidonic acid omega hydroxylation in the proximal tubule of the rat kidney. Ann NY Acad Sci 1994; 744: 11-24.
Mannig RH, Hu L: Nitric oxide regulates renal hemodynamics and urinary sodium excretion in dogs. Hypertension 1994; 23: 619-625.
Nakamoto H, Suzuki H, Kageyama Y, Murakami M, Ohishi A, Naitoh M, et al: Depressor systems contribute to hypertension induced by glucocorticoid excess in dogs. J Hypertension 1992; 10(6): 561-569.
Falardeau P, Martineau A: Prostaglandin I2 and glucocorticoid-induced rise in arterial pressure in the rat. J Hypertension 1989; 7(8): 625-632.
Li P-L, Campbell WB: Epoxyeicosatrienoic acids activate K+ channels in coronary smooth muscle through a guanine nucleotide binding protein. Circ Res 1997; 80: 877-884.
Singh R, Pervin S, Rogers NE, Ignarro LJ, Chaudhuri G: Evidence for the presence of an unusual nitric oxide- and citrulline-producing enzyme in rat kidney. Biochem Biophys Res Commun 1997; 232: 672-677.