2017, Number 1
Dysregulation in hepatic cholesterol homeostasis and its implications in nonalcoholic steatohepatitis
Language: Spanish
References: 131
Page: 50-65
PDF size: 375.88 Kb.
ABSTRACT
Several studies have shown that hepatic free cholesterol (FC) has an important role in the pathogenesis of nonalcoholic steatohepatitis (NASH). These studies have provided evidence that hepatic FC accumulation is toxic at different levels including: mitochondrial oxidative injury, endoplasmic reticulum (ER) stress, and activation of Kupffer cells (KCs) and hepatic stellate cell (HSCs). Altogether, this suggests that hepatic FC content is important for the initiation, maintenance and modulation of the inflammatory response associated with NASH. In this review several mechanisms that participate in the regulation of cholesterol homeostasis and their possible implications in the development and progression of nonalcoholic fatty liver disease (NAFLD) are discussed.REFERENCES
Kleiner, D.E., Brunt, E.M., Van Natta, M., Behling, C., Contos, M.J., Cummings, O.W., Ferrell, L.D., Liu, Y-C., Torbenson, M.S., Unalp-Arida, A., Yeh, M., McCullough, A.J. & Sanyal, A.J. Nonalcoholic Steatohepatitis Clinical Research Network. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatol. Baltim. Md. 41(6): 1313-1321 (2005). DOI:10.1002/hep.20701.
Chalasani, N., Younossi, Z., Lavine, J.E., Diehl, A.M., Brunt, E.M., Cusi, K., Charlton, M. & Sanyal, A.J. The diagnosis and management of non-alcoholic fatty liver disease: Practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology. 55(6): 2005-2023 (2012). DOI:10.1002/hep.25762.
Speliotes, E.K., Butler, J.L., Palmer, C.D. & Voight, B.F. GIANT Consortium, MIGen Consortium, NASH CRN, Hirschhorn JN. PNPLA3 variants specifically confer increased risk for histologic nonalcoholic fatty liver disease but not metabolic disease. Hepatol. Baltim. Md. 52(3):904-912 (2010). DOI:10.1002/hep.23768.
Williams, C.D., Stengel, J., Asike, M.I., Torres, D.M., Shaw, J., Contreras, M., Landt, C.L. & Harrison, S.A. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology 140(1):124- 131 (2011). DOI:10.1053/j.gastro.2010.09.038.
Wong, R.J., Aguilar, M., Cheung, R., Perumpail, R.B., Harrison, S.A., Younossi, Z.M. & Ahmed, A. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology Figura 3.- Modelo de la participación de los cristales de colesterol en el desarrollo de EHNA y fibrosis. 1) Cristalización de colesterol en hepatocitos, activación del inflamasoma NLRP3 y producción de quimiocinas y citocinas. 2) Formación de estructuras tipo corona (ETC) a través de la agregación de células de Kupffer (CKs). 3) Transformación de las CKs a células espumosas activadas por acumulación de cristales de colesterol. 4) Activación y transformación de células estelares hepáticas a miofibroblastos productores de colágena. Abreviaturas: IL-1ß, interleucina 1 beta; IL18, Interleucina 18; MCP1, proteína quimioatrayente de monocitos 1; TGF-ß, factor de crecimiento transformante beta; NLRP3, inflamasoma que contiene los dominios: LRR (rico en repeticiones de leucina), NOD (domino central de unión a nucleótidos NACHT) y un dominio N-terminal PYD (dominios pirina). Basado en 12,130 148(3):547-555 (2015). DOI:10.1053/j.gastro.2014.11.039.
Yamaguchi, K., Yang, L., McCall, S., Huang, J., Yu, X.X., Pandey, S.K., Bhanot, S., Monia, B.P., Li, Y.-X. & Diehl, A.M. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatol. Baltim. Md. 45(6):1366-1374 (2007). DOI:10.1002/hep.21655.
Peretti, N., Sassolas, A., Roy, C.C., Deslandres, C., Charcosset, M., Castagnetti, J., Pugnet-Chardon, L., Moulin, P., Labarge, S., Bouthillier, L., Lachaux, A. & Levy, E. Department of Nutrition- Hepatogastroenterology, Hôpital Femme Mère Enfant, Bron, Université Lyon 1, Department of Pediatrics, CHU Sainte-Justine Research Center, Université de Montréal. Guidelines for the diagnosis and management of chylomicron retention disease based on a review of the literature and the experience of two centers. Orphanet. J. Rare Dis. 5:24 (2010). DOI:10.1186/1750-1172-5-24.
Van Rooyen, D.M., Larter, C.Z., Haigh, W.G., Yeh, M.M., Ioannou, G., Kuver, R., Lee, S.P., Teoh, N.C. & Farrell, G.C. Hepatic free cholesterol accumulates in obese, diabetic mice and causes nonalcoholic steatohepatitis. Gastroenterology 141(4):1393-1403 (2011).e1-e5. DOI:10.1053/j.gastro.2011.06.040.
Min, H.-K., Kapoor, A., Fuchs, M., Mirshahi, F., Zhou, H., Maher, J., Kellum, J., Warnick, R., Contos, M.J. & Sanyal, A.J. Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease. Cell Metab. 15(5):665-674 (2012). DOI:10.1016/j.cmet.2012.04.004.
Kainuma, M., Fujimoto, M., Sekiya, N., Tsuneyama, K., Cheng, C., Takano, Y., Terasawa, K. & Shimada, Y. Cholesterol-fed rabbit as a unique model of nonalcoholic, nonobese, non-insulin-resistant fatty liver disease with characteristic fibrosis. J. Gastroenterol. 41(10):971-980 (2006). DOI:10.1007/s00535-006-1883-1.
Matsuzawa, N., Takamura, T., Kurita, S., Misu, H., Ota, T., Ando, H., Yokoyama, M., Honda, M., Zen, Y., Nakanuma, Y., Miyamoto, K.-I. & Kaneko, S. Lipid-induced oxidative stress causes steatohepatitis in mice fed an atherogenic diet. Hepatol. Baltim. Md. 46(5):1392-1403 (2007). DOI:10.1002/hep.21874.
Wouters, K., van Gorp, P.J., Bieghs, V., Gijbels, M.J., Duimel, H., Lütjohann, D., Kerksiek, A., van Kruchten, R., Maeda, N., Staels, B., van Bilsen, M., Shiri-Sverdlov, R. & Hofker, M.H. Dietary cholesterol, rather than liver steatosis, leads to hepatic inflammation in hyperlipidemic mouse models of nonalcoholic steatohepatitis. Hepatol. Baltim. Md. 48(2):474-486 (2008). DOI:10.1002/hep.22363.
Musso, G., Gambino, R., De Michieli, F., Cassader, M., Rizzetto, M., Durazzo, M., Fagà, E., Silli, B. & Pagano, G. Dietary habits and their relations to insulin resistance and postprandial lipemia in nonalcoholic steatohepatitis. Hepatol. Baltim. Md. 37(4):909- 916 (2003). DOI:10.1053/jhep.2003.50132.
Yasutake, K., Nakamuta, M., Shima, Y., Ohyama, A., Masuda, K., Haruta, N., Fujino, T., Aoyagi, Y., Fukuizumi, K., Yoshimoto, T., Takemoto, R., Miyahara, T., Harada, N., Hayata, F., Nakashima, M. & Enjoji, M. Nutritional investigation of non-obese patients with non-alcoholic fatty liver disease: the significance of dietary cholesterol. Scand. J. Gastroenterol. 44(4):471-477 (2009). DOI:10.1080/00365520802588133.
Chalasani, N., Guo, X., Loomba, R., Goodarzi, M.O., Haritunians, T., Kwon, S., Cui, J., Taylor, K.D., Wilson, L., Cummings, O.W., Chen, Y.-D.I. & Rotter, J.I. Nonalcoholic Steatohepatitis Clinical Research Network. Genome-wide association study identifies variants associated with histologic features of nonalcoholic Fatty liver disease. Gastroenterology 139(5):1567-1576, 1576 (2010). e1-e6. DOI:10.1053/j.gastro.2010.07.057.
Burton, B.K., Deegan, P.B., Enns, G.M., Guardamagna, O., Horslen, S., Hovingh, G.K., Lobritto, S.J., Malinova, V., McLin, V.A., Raiman, J., Di Rocco, M., Santra, S., Sharma, R., Sykut- Cegielska, J., Whitley, C.B., Eckert, S., Valayannopoulos, V. & Quinn, A.G. Clinical Features of Lysosomal Acid Lipase Deficiency. J. Pediatr. Gastroenterol. Nutr. 61(6):619-625 (2015). DOI:10.1097/MPG.0000000000000935.
Burton, B.K., Balwani, M., Feillet, F., Barić, I., Burrow, T.A., Camarena Grande, C., Coker, M., Consuelo-Sánchez, A., Deegan, P., Di Rocco, M., Enns, G.M., Erbe, R., Ezgu, F., Ficicioglu, C., Furuya, K.N., Kane, J., Laukaitis, C., Mengel, E., Neilan, E.G., Nightingale, S., Peters, H., Scarpa, M., Schwab, K.O., Smolka, V., Valayannopoulos, V., Wood, M., Goodman, Z., Yang, Y., Eckert, S., Rojas-Caro, S. & Quinn, A.G. A Phase 3 Trial of Sebelipase Alfa in Lysosomal Acid Lipase Deficiency. N. Engl. J. Med. 373(11):1010-1020 (2015). DOI:10.1056/NEJMoa1501365.
Zhao, L., Chen, Y., Tang, R., Chen, Y., Li, Q., Gong, J., Huang, A., Varghese, Z., Moorhead, J.F. & Ruan, X.Z. Inflammatory stress exacerbates hepatic cholesterol accumulation via increasing cholesterol uptake and de novo synthesis. J. Gastroenterol. Hepatol. 26(5):875-883 (2011). DOI:10.1111/j.1440-1746.2010.06560.x.
Miquilena-Colina, M.E., Lima-Cabello, E., Sánchez-Campos, S., García-Mediavilla, M.V., Fernández-Bermejo, M., Lozano- Rodríguez, T., Vargas-Castrillón, J., Buqué, X., Ochoa, B., Aspichueta, P., González-Gallego, J. & García-Monzón, C. Hepatic fatty acid translocase CD36 upregulation is associated with insulin resistance, hyperinsulinaemia and increased steatosis in non-alcoholic steatohepatitis and chronic hepatitis C. Gut. 60(10):1394-1402 (2011). DOI:10.1136/gut.2010.222844.
Zhou, J., Febbraio, M., Wada, T., Zhai, Y., Kuruba, R., He, J., Lee, J.H., Khadem, S., Ren, S., Li, S., Silverstein, R.L. & Xie, W. Hepatic fatty acid transporter Cd36 is a common target of LXR, PXR, and PPARgamma in promoting steatosis. Gastroenterology 134(2):556-567 (2008). DOI:10.1053/j.gastro.2007.11.037.
Tomita, K., Teratani, T., Suzuki, T., Shimizu, M., Sato, H., Narimatsu, K., Okada, Y., Kurihara, C., Irie, R., Yokoyama, H., Shimamura, K., Usui, S, Ebinuma, H., Saito, H., Watanabe, C., Komoto, S., Kawaguchi, A., Nagao, S., Sugiyama, K., Hokari, R., Kanai, T., Miura, S. & Hibi, T. Free cholesterol accumulation in hepatic stellate cells: mechanism of liver fibrosis aggravation in nonalcoholic steatohepatitis in mice. Hepatol. Baltim. Md. 59(1):154-169 (2014). DOI:10.1002/hep.26604.
Montagner, A., Polizzi, A., Fouché, E., Ducheix, S., Lippi, Y., Lasserre, F., Barquissau, V., Régnier, M., Lukowicz, C., Benhamed, F., Iroz, A., Bertrand-Michel, J., Al Saati, T., Cano, P., Mselli-Lakhal, L., Mithieux, G., Rajas, F., Lagarrigue, S., Pineau, T., Loiseau, N., Postic, C., Langin, D., Wahli, W. & Guillou, H. Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD. Gut. 65(7):1202-1214 (2016). DOI:10.1136/gutjnl-2015-310798.
Francque, S., Verrijken, A., Caron, S., Prawitt, J., Paumelle, R., Derudas, B., Lefebvre, P., Taskinen, M.-R., Van Hul, W., Mertens, I., Hubens, G., Van Marck, E., Michielsen, P., Van Gaal, L. & Staels, B. PPARα gene expression correlates with severity and histological treatment response in patients with non-alcoholic steatohepatitis. J. Hepatol. 63(1):164-173 (2015). DOI:10.1016/j. jhep.2015.02.019.
Carstea, E.D., Morris, J.A., Coleman, K.G., Loftus, S.K., Zhang, D., Cummings, C., Gu, J., Rosenfeld, M.A., Pavan, W.J., Krizman, D.B., Nagle, J., Polymeropoulos, M.H., Sturley, S.L., Ioannou, Y.A., Higgins, M.E., Comly, M., Cooney, A., Brown, A., Kaneski, C.R., Blanchette-Mackie, E.J., Dwyer, N.K., Neufeld, E.B., Chang, T.Y., Liscum, L., Strauss, J.F., Ohno, K., Zeigler, M., Carmi, R., Sokol, J., Markie, D., O’Neill, R.R., van Diggelen, O.P., Elleder, M., Patterson, M.C., Brady, R.O., Vanier, M.T., Pentchev, P.G. & Tagle, D.A. Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science277(5323):228-231 (1997).
Tichauer, J.-E., Morales., M.-G., Amigo, L., Galdames, L., Klein, A., Quinones, V., Ferrada, C., Álvarez, A.-R., Río, M.-C., Miquel, J.-F., Rigotti, A. & Zanlungo, S. Overexpression of the cholesterol-binding protein MLN64 induces liver damage in the mouse. World J. Gastroenterol. 13(22):3071-3079 (2007).
Zhou, T., Li, S., Zhong, W., Vihervaara, T., Béaslas, O., Perttilä, J., Luo, W., Jiang, Y., Lehto, M., Olkkonen, V.M. & Yan, D. OSBP-related protein 8 (ORP8) regulates plasma and liver tissue lipid levels and interacts with the nucleoporin Nup62. PloS One. 6(6):e21078 (2011). DOI:10.1371/journal.pone.0021078.
Vega-Badillo, J., Gutiérrez-Vidal, R., Hernández-Pérez, H.A., Villamil-Ramírez, H., León-Mimila, P., Sánchez-Muñoz, F., Morán-Ramos, S., Larrieta-Carrasco, E., Fernández-Silva, I., Méndez-Sánchez, N., Tovar, A.R., Campos-Pérez, F., Villarreal- Molina, T., Hernández-Pando, R., Aguilar-Salinas, C.A. & Canizales-Quinteros, S. Hepatic miR-33a/miR-144 and their target gene ABCA1 are associated with steatohepatitis in morbidly obese subjects. Liver Int. 36(9):1383-1391 (2016). DOI:10.1111/ liv.13109.
Su, K., Sabeva, N.S., Liu, J., Wang, Y., Bhatnagar, S., van der Westhuyzen, D.R. & Graf, G.A. The ABCG5 ABCG8 sterol transporter opposes the development of fatty liver disease and loss of glycemic control independently of phytosterol accumulation. J. Biol. Chem. 287(34):28564-28575 (2012). DOI:10.1074/jbc. M112.360081.
Spolding, B., Connor, T., Wittmer, C., Abreu, L.L.F., Kaspi, A., Ziemann, M., Kaur, G., Cooper, A., Morrison, S., Lee, S., Sinclair, A., Gibert, Y., Trevaskis J.L., Roth, J.D., El-Osta, A., Standish, R. & Walder, K. Rapid development of non-alcoholic steatohepatitis in Psammomys obesus (Israeli sand rat). PloS One 9(3):e92656 (2014). DOI:10.1371/journal.pone.0092656.
Braza-Boïls, A., Marí-Alexandre, J., Molina, P., Arnau, M.A., Barceló-Molina, M., Domingo, D., Girbes, J., Giner, J., Martínez- Dolz, L. & Zorio, E. Deregulated hepatic microRNAs underlie the association between non-alcoholic fatty liver disease and coronary artery disease. Liver Int. 36(8):1221-1229. (2016). DOI: 10.1111/ liv.13097.
Chang, J., Nicolas, E., Marks, D., Sander, C., Lerro, A., Buendía, M.A., Xu, C., Mason, W.S., Moloshok T., Bort, R., Zaret, K.S. & Taylor, J.M. miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol. 1(2):106-113 (2004).
Esau, C., Davis, S., Murray, S.F., Yu, X.X., Pandey, S.K., Pear, M, Watts, L., Booten, S.L., Graham, M., McKay, R., Subramaniam, A., Propp, S., Lollo, B.A., Freier, S., Bennett, C.F., Bhanot, S. & Monia, B.P. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. ;3(2):87-98 (2006). DOI:10.1016/j.cmet.2006.01.005.
Horie, T., Ono, K., Horiguchi, M., Nishi, H., Nakamura, T., Nagao, K., Kinoshita, M., Kuwabara, Y., Marusawa, H., Iwanaga, Y., Hasegawa, K., Yokode, M., Kimura, T. & Kita, T. MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo. Proc. Natl. Acad. Sci. U.S.A. 107(40):17321-17326 (2010). DOI:10.1073/pnas.1008499107.
Rayner, K.J., Esau, C.C., Hussain, F.N., McDaniel, A.L., Marshall, S.M., van Gils, J.M., Ray, T.D., Sheedy, F.J., Goedeke, L., Liu, X., Khatsenko, O.G., Kaimal, V., Lees, C.J., Fernández-Hernando, C., Fisher, E.A., Temel, R.E. & Moore, K.J. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature 478(7369):404-407 (2011). DOI:10.1038/ nature10486.
de Aguiar Vallim, T.Q., Tarling, E.J., Kim, T., Civelek, M., Baldán, Á., Esau, C. & Edwards, P.A. MicroRNA-144 regulates hepatic ATP binding cassette transporter A1 and plasma highdensity lipoprotein after activation of the nuclear receptor farnesoid X receptor. Circ. Res. 112(12):1602-1612 (2013). DOI:10.1161/CIRCRESAHA.112.300648.
Ramírez, C.M., Rotllan, N., Vlassov, A.V., Dávalos, A., Li M., Goedeke, L., Aranda, J.F., Cirera-Salinas, D., Araldi, E., Salerno, A., Wanschel, A., Zavadil, J., Castrillo, A., Kim, J., Suárez, Y. & Fernández-Hernando, C. Control of cholesterol metabolism and plasma high-density lipoprotein levels by microRNA-144. Circ. Res. 112(12):1592-1601 (2013). DOI:10.1161/ CIRCRESAHA.112.300626.
Hu, Y.-W., Hu, Y.-R., Zhao, J.-Y., Li, S.-F., Ma, X., Wu, S.- G., Lu, J.-B., Qiu, Y.-R., Sha, Y.-H., Wang, Y.-C., Gao, J.-J., Zheng, L. & Wang, Q. An agomir of miR-144-3p accelerates plaque formation through impairing reverse cholesterol transport and promoting pro-inflammatory cytokine production. PloS One 9(4):e94997 (2014). DOI:10.1371/journal.pone.0094997.
Hager, L., Li, L., Pun, H., Liu, L., Hossain, M.A., Maguire, GF, Naples, M., Baker, C., Magomedova, L., Tam, J., Adeli, K., Cummins, C.L., Connelly, P.W. & Ng, D.S. Lecithin:cholesterol acyltransferase deficiency protects against cholesterol-induced hepatic endoplasmic reticulum stress in mice. J. Biol. Chem. 287(24):20755-20768 (2012). DOI:10.1074/jbc.M112.340919.
Li, L., Hossain, M.A., Sadat, S., Hager, L., Liu, L., Tam, L., Schroer, S., Huogen, L., Fantus, I.G., Connelly, P.W., Woo, M. & Ng, D.S. Lecithin cholesterol acyltransferase null mice are protected from diet-induced obesity and insulin resistance in a gender-specific manner through multiple pathways. J. Biol. Chem. 286(20):17809-17820 (2011). DOI:10.1074/jbc. M110.180893.
Leroux, A., Ferrere, G., Godie, V., Cailleux, F., Renoud, M.-L., Gaudin, F., Naveau, S., Prévot, S., Makhzami, S., Perlemuter, G. & Cassard-Doulcier, A.-M. Toxic lipids stored by Kupffer cells correlates with their pro-inflammatory phenotype at an early stage of steatohepatitis. J. Hepatol. 57(1):141-149 (2012). DOI:10.1016/j.jhep.2012.02.028.
Bieghs, V., van Gorp, P.J., Walenbergh, S.M.A., Gijbels, M.J., Verheyen, F., Buurman, W.A., Briles, D.E., Hofker, M.H., Binder, C.J. & Shiri-Sverdlov, R. Specific immunization strategies against oxidized low-density lipoprotein: a novel way to reduce nonalcoholic steatohepatitis in mice. Hepatol. Baltim. Md. 56(3):894-903 (2012). DOI:10.1002/hep.25660.
Hendrikx, T., Bieghs, V., Walenbergh, S.M.A., van Gorp, P.J., Verheyen, F., Jeurissen, M.L.J., Steinbusch, M.M.F., Vaes, N., Binder, C.J., Koek, G.H., Stienstra, R., Netea, M.G., Hofker, M.H. & Shiri-Sverdlov, R. Macrophage specific caspase-1/11 deficiency protects against cholesterol crystallization and hepatic inflammation in hyperlipidemic mice. PloS One. 8(12):e78792 (2013). DOI:10.1371/journal.pone.0078792.
Bieghs, V., Hendrikx, T., van Gorp, P.J., Verheyen, F., Guichot, Y.D., Walenbergh, S.M.A., Jeurissen, M.L.J., Gijbels, M., Rensen, S.S., Bast, A., Plat, J., Kalhan, S.C., Koek, G.H., Leitersdorf, E., Hofker, M.H., Lütjohann, D. & Shiri-Sverdlov, R. The cholesterol derivative 27-hydroxycholesterol reduces steatohepatitis in mice. Gastroenterology 144(1):167-178.e1 (2013). DOI:10.1053/j.gastro.2012.09.062.
Teratani, T., Tomita, K., Suzuki, T., Oshikawa, T., Yokoyama, H., Shimamura, K., Tominaga, S., Hiroi, S., Irie, R., Okada, Y., Kurihara, C., Ebinuma, H., Saito, H., Hokari, R., Sugiyama, K., Kanai, T., Miura, S. & Hibi, T. A high-cholesterol diet exacerbates liver fibrosis in mice via accumulation of free cholesterol in hepatic stellate cells. Gastroenterology 142(1):152-164.e10 (2012). DOI:10.1053/j.gastro.2011.09.049.
Tomita, K., Teratani, T., Suzuki, T., Shimizu, M., Sato, H., Narimatsu, K., Usui, S., Furuhashi, H., Kimura, A., Nishiyama, K., Maejima, T., Okada, Y., Kurihara, C., Shimamura, K., Ebinuma, H., Saito, H., Yokoyama, H., Watanabe, C., Komoto, S., Nagao, S., Sugiyama, K., Aosasa, S., Hatsuse, K., Yamamoto, J., Hibi, T., Miura, S., Hokari, R. & Kanai, T. Acyl-CoA:cholesterol acyltransferase 1 mediates liver fibrosis by regulating free cholesterol accumulation in hepatic stellate cells. J. Hepatol. 61(1):98-106 (2014). DOI:10.1016/j.jhep.2014.03.018.
Duewell, P., Kono, H., Rayner, K.J., Sirois, C.M., Vladimer, G., Bauernfeind, F.G., Abela, G.S., Franchi, L., Núñez, G., Schnurr, M., Espevik, T., Lien, E., Fitzgerald, K.A., Rock, K.L., Moore, K.J., Wright, S.D., Hornung, V. & Latz, E. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464(7293):1357-1361 (2010). DOI:10.1038/nature08938.
Rajamäki, K., Lappalainen, J., Oörni, K., Välimäki, E., Matikainen, S., Kovanen, P.T. & Eklund, K.K. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PloS One 5(7):e11765 (2010). DOI:10.1371/ journal.pone.0011765.
Ioannou, G.N., Van Rooyen, D.M., Savard, C., Haigh, W.G., Ye, M.M., Teoh, N.C. & Farrell, G.C. Cholesterol-lowering drugs cause dissolution of cholesterol crystals and disperse Kupffer cell crown-like structures during resolution of NASH. J. Lipid. Res. 56(2):277-285 (2015). DOI:10.1194/jlr.M053785.