2016, Number 2
<< Back Next >>
Biotecnol Apl 2016; 33 (2)
BluBAC system for determining microbial growth in clinical microbiological diagnosis samples by combining photostimulation and turbidimetry
Ramírez-Frómeta N, Lamothe-Nuviola CA, Riverón-Rodríguez E, Moreno-Barrios CY, Regueiro-Gómez A, Felice CJ
Language: English
References: 25
Page: 2401-2405
PDF size: 570.17 Kb.
ABSTRACT
An experimental Workstation was designed, named BluBAC, intended for the microbiological diagnosis in clinical samples, which integrates photostimulation in two zones of the visible light spectrum: red (625 to 644 nm) and blue (430 to 480 nm), together with turbidimetric determinations in biological samples. It allows the analysis of photostimulation on microbial growth. The workstation comprises optoelectronic components and a MSP430 family microcontroller, connected through a Usb port to a computer for processing and visualizing the output signals coming from the samples. The signals are obtained through a graphic control interface in Visual Studio. The influence of the stimulation parameters (wavelength, light intensity, frequency and intensity of stimulation) on the growth of
Escherichia coli cells was studied in bacterial cell cultures in DKD medium. The combination of photostimulation with turbidimetric determinations facilitated microbial detection, with decreased lag time and a longer exponential growth phase, stimulating bacterial growth more than other methods previously reported. These results evidenced the potential advantages of the experimental workstation BluBAC over other clinical microbiological diagnostic systems available in the market.
REFERENCES
Karu T. Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B.1999;49(1):1-17.
Kushibiki T, Tajiri T, Ninomiya Y, Awazu K. Chondrogenic mRNA expression in prechondrogenic cells after blue laser irradiation. J Photochem Photobiol B. 2010;98(3):211-5.
Eells JT, Wong-Riley MT, VerHoeve J, Henry M, Buchman EV, Kane MP, et al. Mitochondrial signal introduction in accelerated wound and retinal healing by near-infrared light therapy. Mitochondrion. 2004;4(5-6):559-67.
Wong-Riley MT, Liang HL, Eells JT, Chance B, Henry MM, Buchmann E, et al. Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: role of cytochrome c oxidase. J Biol Chem. 2005;280(6):4761-71.
Burnstock G. Purines and sensory nerves. Handb Exp Pharmacol. 2009;194:332-92.
Khakh B, Burnstock G. The double life of ATP. Sci Am. 2009;301(6):84-92.
Masuda S. Light Detection and Signal Transduction in the BLUF Photoreceptors. Plant Cell Physiol. 2013;54(2):171-9.
Jung A, Domratcheva T, Tarutina M, Wu Q, Wen-huang Ko, Shoeman RL, et al. Structure of a bacterial BLUF photoreceptor: Insights into blue light-mediated signal transduction. Proc Natl Acad Sci USA. 2005;102(35):12350-5.
van der Horst MA, Hellingwerf KJ. Photoreceptor proteins, “star actors of modern times”: a review of the functional dynamics in the structure of representative members of six different photoreceptor families. Acc Chem Res. 2004;37(1):13-20.
Girinsky O, Girardin N, inventors; Girinsky O, Girardin N, assignee. Use of blue light for stimulating the metabolism of non-phototrophic microorganisms. WO2014072934A1; 2014 May 15.
Ramírez-Frómeta N, Lamothe-Nuviola CA, Riverón-Rodríguez E, Moreno-Barrios CY, Regueiro-Gómez A, Contreras OR. Sistema para la detección de microorganismos fotosintéticos y no fotosintéticos en muestras biológicas por fotoestimulación controlada. Patent pending, CU 2016- 0070; 2016.
Analog-Devices. AD9834, 20 mW Power, 2.3 V to 5.5 V, 75 MHz Complete DDS; 2014.
Frederic-Walton H, Reyes J. Análisis químico e instrumental moderno. Barcelona: Editorial Reverté; 1983.
Greppin H, Gouda S, Schorer E. Action de la lumiere sur les colonies de Pseudomonas fluorescens Mig. Arch Sci.1965;18:646.
Greppin H, Gouda S. Lumisynthese chez Pseudomonas fluorescens et sa nature adaptative. Mig Arch Sci.1965;18:642.
Cantino EC, Horenstein EA. The stimulatory effect of light upon growth and CO fixation in Blastocladiella.The SKI cycle. Mycologiya.1956;48:777-99.
Fraikin G, Verkhoturov V, Rubin LB. The phytochromic system in yeasts Candida guillermondii. VestnikMGU (Biol).1973;4:51-5.
Konev SV, Lyskova TI, Prokopova JV. Stimulative action of visible light upon division and respiration of yeast cells. Proc Ukr Acad Sci.1970;6:51-6.
Carlile MJ. The photobiology of fungi. Annu Rev Plant Physiol.1965;16:175-202.
Sucong L, Shengii Y, Dong L. Biological effects of N laser on bacterium. In: Proc. Conf. Lasers Electro-Optics Int Quant. Electron Conf. Anaheim, CA, 1990 May 21-25.
Fedoseyeva GE, Karu TI, Lyapunova TS, Pomoshnikova NA, Meiseel MN. Sensitivity of yeast cultures to low-intensity red light. Mikrobiologiya.1987;56:792-6.
Fedoseyeva GE, Karu TI, Lyapunova TS, Pomoshnikova NA, Meiseel MN. The activation of yeast metabolism with He-Ne laser radiation. I. Protein synthesis in various cultures. Lasers Life Sci.1988;2:137-46.
Fedoseyeva GE, Karu TI, Letokhov VS, Lobko VV, Pomoshnikova NA, Lyapunova TS, et al. Effect of He-Ne laser radiation on the reproduction rate and protein synthesis in the yeast. Laser Chem.1984;5:27-33.
Fedoseyeva GE, Karu TI, Lyapunova TS, Pomoshnikova NA, Meiseel MN. The activation of yeast metabolism with He-Ne laser radiation. II. Activity of enzymes of oxidative and phosphorous metabolism. Lasers LiIe Sci. 1988;2:147-54.
Lloyd D, Poole RK, Edwards SW. The Cell Division Cycle, Temporal Organization and Control of Cellular Growth and Reproduction. New York: Academic Press; 1982.