2016, Number 2
<< Back
TIP Rev Esp Cienc Quim Biol 2016; 19 (2)
On the nature of evolution: an explicative model
Monroy-Ata A, Peña-Becerril JC
Language: English
References: 28
Page: 127-132
PDF size: 399.76 Kb.
ABSTRACT
For years, links between entropy and information of a system have been proposed, but their changes in time and in their probabilistic structural states have not been proved in a robust model as a unique process. This document demonstrates that increasement in entropy and information of a system are the two paths for changes in its configuration status. Biological evolution also has a trend toward information accumulation and complexity. In this approach, the aim of this article is to answer the question: What is the driven force of biological evolution? For this, an analogy between the evolution of a living system and the transmission of a message in time was made, both in the middle of environmental noise and stochasticity. A mathematical model, initially developed by Norbert Wiener, was employed to show the dynamics of the amount of information in a message, using a time series and the Brownian motion as statistical frame. Léon Brillouin’s mathematical definition of information and Claude Shannon’s entropy equation were employed, both are similar, in order to know changes in the two physical properties. The proposed model includes time and configurational probabilities of the system and it is suggested that entropy can be considered as missing information, according to Arieh Ben–Naim. In addition, a graphic shows that information accumulation can be the driven force of both processes: evolution (gain in information and complexity), and increase in entropy (missing information and restrictions loss). Finally, a living system can be defined as a dynamic set of information coded in a reservoir of genetic, epigenetic and ontogenic programs, in the middle of environmental noise and stochasticity, which points toward an increase in fitness and functionality.
REFERENCES
Margulis, L. & Dorion, S. ¿Qué es la vida? (Tusquets Editores. Barcelona, 1996).
Danchin, A. La vida y la máquina de Turing. Mundo Cient. 229, 46-52 (2001).
Pulselli, R.M., Simoncini, E. & Tiezzi, E. Self-organization in dissipative structures: A thermodynamics theory for the emergence of prebiotic cells and their epigenetic evolution. BioSyst. 96, 237-241 (2009).
Watson, R.A. & Szathmáry, E. How can evolution learn? Trends in Ecol. & Evol. 31 (2), 147-157 (2016).
Sæther, B.-E. & Engen, S. The concept of fitness in fluctuating environments. Trends in Ecol. & Evol. 30 (5), 273-281 (2015).
Sánchez, J.R. & Arizmendi, C.M. Transfer of information in noise induced transport. Computer Phys. Comm. 121-122, 374-375 (1999).
Wiener, N. Cybernetics or control and communication in the animal and the machine. 2nd ed. (MIT Press and John Wiley & Sons, Inc., New York, 1961).
Wiener, N. Cibernética y Sociedad (Ediciones del Consejo Nacional de Ciencia y Tecnología, Ciudad de México, 1981).
García Colín, L. Entropía (Ediciones de la Universidad Nacional Autónoma de México, Ciudad de México, 1983).
Ben-Naim, A. A farewell to entropy: Statistical thermodynamics based on information (World Scientific Publishers, Singapore, 2008).
Brillouin, L. La información y la incertidumbre en la ciencia (Ediciones de la Universidad Nacional Autónoma de México, Ciudad de México, 1969).
Schrödinger, E. ¿Qué es la vida? (Universidad de Salamanca, Madrid, 2005).
Bykhovsky, A.I. The negentropy principle of information and some problems in bioenergetics. Math. Biosci. 3, 353-370 (1968).
El Naschie, M.S. Quantum gravity, Clifford algebras, fuzzy set theory and the fundamental constants of nature. Chaos, Solit. & Fractals. 20, 437-450 (2004).
Lineweaver, Ch.H. & Egan, Ch.A. Life, gravity and the second law of thermodynamics. Phys. of Life Rev. 5, 225-242 (2008).
Danchin, A. Myopic selection of novel information drives evolution. Curr. Op. in Biotechnol. 20, 504-508 (2009).
Claycomb, J. & Tran, J.Q.P. Introduction to biophysics (Jones and Bartlett Pub., Boston, 2011).
Brillouin, L. La science et la théorie de l´information (Masson et Cie., Paris, 1959).
Binning, G. The fractal structure of evolution. In Fractals in Physics (ed. Aharoy, A. & Feder, J.) 32-36 (North-Holland, Amsterdam, 1989).
Fernández, J., Plastino, A. Structural stability can shape biological evolution. Physica A. 276, 610-619 (2000).
Godron, M. Écologie de la végétation terrestre (Masson, Paris, 1984).
Elsheikh, E. M. Towards a new physical theory of biotic evolution and development. Ecol. Modelling. 221, 1108- 1118 (2010).
Del Río-Correa, J.L. & García-Colín, L.S. The maximum entropy principle and the stochastic aspects of deterministic chaos. Physica A. 258, 77-88 (1998).
Demetrius, L. & Manke, T. Robustness and network evolution -an entropic principle. Physica A. 346, 682-696 (2005).
De Vree, J.K. A note on information, order, stability and adaptability. BioSyst. 38, 221-227 (1996).
Gil-White, F. ¿Tiene reglas la evolución cultural? Mundo Cient. No. 229, 60-65 (2001).
Saccheri, I. & Hanski, I. Natural selection and population dynamics. Trends in Ecol. & Evol. 21(6), 341-347 (2006).
Michaelian, K. Thermodynamic dissipation theory for the origin of life. Earth System Dynamics. 2, 37-51 (2011).