2016, Number 2
<< Back Next >>
Revista Cubana de Informática Médica 2016; 8 (2)
Algorithm selection for classifying Solitary Pulmonary Nodules
Rivero CA, Cruz CLM, Artiles LJ
Language: Spanish
References: 34
Page: 166-177
PDF size: 146.04 Kb.
ABSTRACT
In recent years the international scientific community has devoted considerable resources to research and development of systems for computer-aided diagnosis used by physicians in the diagnostic process. Special attention has been provided in some medical areas, such as oncology specialties, by high mortality rates caused by some diseases like lung cancer. Early diagnosis of this condition can greatly reduce these indicators and improve quality of life of patients.The objective pursued with the development of this research is the proper selection of a classification algorithm, to be used in the phase that has the same name, as part of a system of computer-aided diagnosis for classification of solitary pulmonary nodules. For the selection of the appropriate classification algorithm, an experiment was performed using the tools Weka v3.7.10 and Matlab 2013. To determine which of the techniques studied produces better performance results, the same data set was used for the phases of training, testing and validation of the classifier, available in the international database The Lung Image Database Consortium Image Collection.
REFERENCES
Aguilar C. IMPACTO DE LA TECNOLOGÍA EN LA MEDICINA, 2012. [Online]. Available: http://impactodelatecnologiaenlamedicina.blogspot.com/
Bogoni L, Ko J. P. "Impact of a Computer-Aided Detection (CAD) System Integrated into a Picture Archiving and Communication System (PACS) on Reader Sensitivity and Efficiency for the Detection of Lung Nodules in Thoracic CT Exams," J Digit Imaging. vol. 25, pp. 771-781, 2012.
3."Cancer Fact Sheet," GLOBOCAN, 2008.
Stewart B. W, Wild C. P. "Cancer facts sheet," World Health Organization, Scientific, 2015.
Summers R. M. "Road maps for advancement of radiologic computer-aided detection in the 21st century". Radiology, vol. 229, no. 1, pp. 11-13, 2003.
Masoomeh B. "Computer-aided dermoscopy for diagnosis of melanoma". BMC Dermatology. vol. 5, 2005.
Alavi A, Mosenifar Z. "Solitary Pulmonary Nodule". Medscape, vol. 1, pp. 1-4, 2013.
Suárez J. J. "Desarrollo de un sistema de diagnóstico asistido por computador para detección de nódulos pulmonares en tomografía computarizada multicorte". Tesis PhD, 2009.
9.Ruiz J, Guzmán A, Martínez J. F. Enfoque Lógico Combinatorio al Reconocimiento de Patrones. Selección de variables y clasificación supervisada., Colección de Ciencias de la Computación. Instituto Politécnico Nacional de México: Departamento de Ingeniería Eléctrica de México, 1999.
Conde A, Navascués E. "Estudio del nódulo pulmonar solitario". Manual de Neumología Neumosur, vol. 3, pp. 233-242, 2009.
SEPÚLVEDA C, SEPÚLVEDA A, FUENTES E. "Nódulo Pulmonar Solitario". Rev. Chilena de Cirugía. vol. 60, no. 1, pp. 71-78, 2008.
Jeong Y. J, Yi C. A, Lee K. S. "Solitary Pulmonary Nodules: Detection, Characterization, and Guidance for Further Diagnostic Workup and Treatment". Radiology. vol. 50, no. 3, pp. 2-8, 2008.
Martín B, Sanz A. Redes Neuronales y Sistemas Borrosos. 2nd ed. Zaragoza, España: Alfaomega, 2001.
Lung Image Database Consortium (LIDC). 2014. [Online]. Available: http://imaging.cancer.gov/programsandresources/informationsystems/lidc
Dennis M.C. Ideler, "Comparison of Artificial Neural Network and k-Nearest Neighbor for Classification," Brock University, Computer Science Department, Scientific 1, 2010.
BETANCOURT G. "LAS MÁQUINAS DE SOPORTE VECTORIAL (SVMs)". Scientia et Technica. vol. 11, no. 27, 2005.
Mustafa M, Taib M, Murat Z, Sulaiman N. "Comparison between KNN and ANN Classification in Brain Balancing Application via Spectrogram Image". Journal of Computer Science & Computational Mathematics. vol. 2, no. 4, 2012.
Song Z, Gu Q. "Image Classification Using SVM, KNN and Performance Comparison with Logistic Regression". Ciencia, Universidad de Dartmouth, 2011.
Chen H, Wang X, Ma D, Ma B. "Neural network-based computer-aided diagnosis in distinguishing malignant from benign solitary pulmonary nodules by computed tomography". Chin Med J (Engl). vol. 120, no. 14, p. 1211:1215, 2007.
Moré J. J. "The Levenberg-Marquardt algorithm: Implementation and theory," in Numerical Analysis, Watson G.A , Ed. Springer Berlin Heidelberg, 1978, pp. 105-116.
Liu L, Wang K, Wen D-W, Li Y. "Multiple kernel MtLSSVM and its application in lung nodule recognition". Journal of Jilin University (Engineering and Technology Edition). vol. 44, no. 2, pp. 508-515, 2014.
Hamada S, Brahim B, Suziah S. "A Computer Aided Diagnosis System for Lung Cancer based on Statistical and Machine Learning Techniques". Journal of Computers. vol. 9, no. 2, pp. 425-431, 2014.
Bhuvaneswari C,Aruna P, Loganathan D. "A new fusion model for classification of the lung diseases using genetic algorithm". Egyptian Informatics Journal. vol. 15, no. 2, pp. 69-77, 2014.
Colas F, Brazdil P. "Comparison of SVM and Some Older Classification Algorithms in Text Classification Tasks". Artificial Intelligence in Theory and Practice. vol. 217, pp. 172-177, 2006.
Hernández R, Fernández C, Baptista P. Metodología de la investigación. 4th ed, vol. 4. México: Mc Graw Hill, 2010.
"Weka 3: Data Mining Software in Java". 2013. [Online]. Available: http://www.cs.waikato.ac.nz/%7Eml/weka/index.html
"Matlab. The Language of technical Computing". 2014. [Online]. Available: http://www.mathworks.com/products/matlab/
Meyer C, Armato S-I, Fenimore C, McLennan G, Bidaut L, et-al. "Quantitative imaging to assess tumor response to therapy: common themes of measurement, truth data, and error sources". Translational Oncology. vol. 2, no. 4, pp. 198-210, 2009.
Armato S-I, Meyer C, McNitt-Gray M, McLennan G, Reeves A."The Reference Image Database to Evaluate Response to therapy in lung cancer (RIDER) project: A resource for the development of change analysis software". Clinical pharmacology and therapeutics, vol. 84, no. 4, pp. 448-456, 2008.
Kuravati R, Sasidhar B, Ramesh D-R. "A Novel Method for Classification of Lung Nodules as Benign and Malignant using Artificial Neural Network". International Journal of Engineering and Computer Science. vol. 3, no. 8, pp. 7641-7645, 2014.
Meyer C, Armato S-I, Fenimore C, McLennan G, Bidaut L, et-al. "The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI). A completed reference database of lung nodules on CT scans". Medical Physics. vol. 38, no. 2, pp. 915-931, 2011.
Shiraishi J, Katsuragawa S, Ikezoe J, Matsumoto T, Kobayashi T, Komatsu K. "Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists' detection of pulmonary nodules". American Journal of Roentgenology. vol. 174, no. 1, pp. 71-7, 2000.
Clark K, Gierada D, Moore S, Maffitt D. "Creation of a CT Image Library for the Lung Screening Study of the National Lung Screening Trial". Journal of Digital Imaging. vol. 20, no. 1, pp. 23-31, 2010.
Clark K, Vendt B, Smith K, Freymann J,Kirby J, Koppel P. "The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository". Journal of Digital Imaging. vol. 26, no. 6, pp. 1045-1057, 2013.