2005, Number 6
<< Back Next >>
salud publica mex 2005; 47 (6)
Gene therapy with cytokines against cervical cancer.
Bermúdez-Morales VH, Peralta-Zaragoza O, Madrid-Marina V
Language: Spanish
References: 92
Page: 458-468
PDF size: 197.72 Kb.
ABSTRACT
Gene therapy is an excellent alternative for treatment of many diseases. Capacity to manipulate the DNA has allowed direct the gene therapy to correct the function of an altered gene, to increase the expression of a gene and to favour the activation of the immune response. This way, it can intend the use of the DNA like medication able to control, to correct or to cure many diseases. Gene therapy against cancer has an enormous potential, and actually the use of the DNA has increased to control diverse cancer in animal models, with very encouraging results that have allowed its applications in experimental protocols in human. This work concentrates a review of the foundations of the gene therapy and its application on cervical cancer, from the point of view of the alterations of the immune
system focused on the tumour micro-environment, and the
use of the cytokines as immunomodulators.
REFERENCES
Smith KR. Gene therapy: theoretical and bioethical concepts. Arch Med Res 2003:34:247-268.
Bishop JM. Cancer the rise of the genetic paradigm. Genes Dev 1995;9:1309-1315.
Harris CC, Hollstein M. Clinical implications of the p53 tumorsuppresor gene. New Engl J Med 1993;329:1318-1327.
Zhang Y, Mukhopadhyay T, Donehower LA, Georges RN, Roth JA. Retroviral vector-mediated transduction of k-ras antisense RNA into human lung cancer cells inhibits expression of the malignant phenotype. Hum Gene Ther 1993;4:445-460.
Dachs GU, Dougherty GJ, Stratford IJ, Chaplin DJ. Targeting gene therapy to cancer: a review. Oncol Research 1997;9:313-325. 6. Pardoll D. Does the immune system see tumors as foreign or self?. Annu Rev Immunol 2003;21:807-839.
Sadelain M, Rivière I, Brentjens R. Targeting tumours with genetically enhanced T lymphocytes. Natl Rev Cancer 2003;3:35-45.
Pardoll DM, Topalian SL. The role of CD4+ T-cell responses in antitumor immunity. Curr Opin Immunol 1998;10:588-594.
Toes RE, Ossendorp F, Offringa R, Melief CJM. CD4 T cells and their antitumor immune responses. J Exp Med 1999;189:753-756.
Paul WE. Pleiotropy and redundancy: T cell-dereived lymphokines in the immune response. Cell 1989;57:521-524.
Schiepers OJ, Wicher MC, Maes M. Cytokines and major depression. Prog Neuropsychopharmacol Biol Psychiatry 2005;29:201-217.
Dinarello CA. Proinflammatory cytokines. Chest 2000;118:503-508.
Giannini SL, Al-Saleh W, Piron H, Jacobs N, Doyen J, Boniver J, et al. Cytokine expression in squamous intraepithelial lessions of the uterine cervix: implications for generation of local immunosuppression. Clin Exp Immunol 1998;113:183-189.
Nash MA, Ferrandina G, Loercher A, Freedman RS. The role of cytokines in both the normal and malignant ovary. Endocrine-Related Cancer 1999;6:93-107.
Matsuda M, Salazar F, Petersson M, Masucci G, HanssonJ, Pisa P, et al. Interleukin 10 pretreated protects target cells from tumor and allospecific cytotoxic T cells and downregulates HLA class I expression. J Exp Med 1994;180:2371-2376.
Reichert TE, Rabinowich H, Johnson JT, Whiteside TL. Immune cells in the tumor microenviroment: mechanisms responsible for significant and functional defects. J Immunother 1998;21:295-306.
Taylor DD, Gercel-Taylor C, Lyons KS, Stanson J, Whiteside TL. T-cell apoptosis and suppression of T-cell resceptor/CD3-z by Fas ligandcontaining membrane vesicles shed from ovarian tumors. Clin Cancer Res 2003;9:5113-5119.
Pisa P, Halapi E, Pisa EK,Gerdin E, Hising C, Bucht A, et al. Selective expression of interleukin 10, interferon gamma, and granulocytesmacrophages colony-stimulating factor in ovarian cancer. Proc Natl Acad Sci USA 1992;89:7708-7712.
Huang M, Wang J, Lee P, Sharma S, Mao JT, Meissner H, et al. Human non-small cell lung cancer cells express a type 2 cytokine pattern. Cancer Res 1995;55:3847-3853.
Kruger-Krasagakes S, Krasagakis K, Garbe C, Schmitt E, Huls C, Blankenstein T, et al. Expression of interleukin 10 in human melanoma. Br J Cancer 1994;70:1182-1185.
Wu T-C, Kurman RJ. Analysis of cytokine profiles in patients with human papillomavirus-associated neoplasms. J Natl Cancer Inst 1997;89:185-187.
De Grujil TD, Bontkes HJ, van de Muysengerg AJC, van Ostveen JW, Stukart MJ, Verheijen RHM, et al. Differences in cytokine mRNA profiles between premalignant and malignant lession of the uterine cervix. Eur J Cancer 1999;35:490-497.
Bor-Ching S, Rong-Hwa L, Huang-Chun L, Hong-Nerng Ho, Su-Ming H, Su-Cheng H. Predominant Th2/Tc2 polarity of tumor-infiltrating lymphocytes in human cervical cancer. J Immunol 2001;167:2972-2978.
Clerici M, Merola M, Ferrario E, Trabattoni D, Villa ML, Stefanon B, et al. Cytokines production patterns in cervical intraepithelial neoplasia: association with human papillomavirus infection. J Natl Cancer Inst 1997;89:245-250.
Sheu BC, Lin RH, Lien HC, Ho HN, Hsu SM, Huang SC. Predominant Th2/Tc2 polarity of tumor-infiltrating lymphocytes in human cervical cancer. J Immunol 2001;167:2972-2978.
Ritz U, Momburg F, Pilch H, Huber C, Maeurer MJ, Seliger B. Deficient expression of components of the MHC class I antigen processing machinery in human cervical carcinoma. Int J Oncol 2001;19:1211-1220.
Ellis JR, Keating PJ, Baird J, Hounsell EF, Renouf DV, Rowe M, et al. The association of an HPV16 oncogene with HLA-B7 has implication for vaccine design in cervical cancer. Nat Med 1995;1:464-470.
Sheu BC, Lin RH, Ho HN y Huang SC. Down-regulation of CD25 expression on the surface of activated tumor-infiltrating lymphocytes in human cervical carcinoma. Hum Immunol 1997;56:39-48.
De Gruijl TD, Bontkes HJ, Preccatori F, Galle MP, Helmerhorst TJ, Verheijen RH, et al. Expression of CD3-zeta on T-cells in primary cervical carcinoma and in metastasis-positive and –negative pelvic lymph nodes. Br J Cancer 1999;79:1127-1132.
Kono K, Ressing ME, Brandt RM, Melief CJ, Potkul RK, Andersson B, et al. Decreased expression of signal-transducing zeta chain in peripheral T cells and natural killer cells in patients with cervical cancer. Clin Cancer Res 1996;2:1825-1828.
Dranoff G. Cytokines in cancer paphogenesis and cancer therapy. Nature Rev 2004:4:11-22.
Liu M, Acree B, Balloul JM, Bizouarne N, Paul S, Slos P, et al. Genebase vaccines and immunotherapeutics. Proc Natl Acad Sci USA 2004;101:14567-14571.
Han R, Reed CA, Cladel NM, Christensen ND. Intramuscular injection of plasmid DNA encoding cottontail rabbit papillomavirus E1, E2, E6 and E7 induces T cell-mediated but no humoral immune responses in rabbits. Vaccine 1999;17:1558-1566.
Shi W, Bu P, Liu J, Polack A, Fisher S, Qiao L. Human papillomavirus type E7 DNA vaccine: mutation in the open reading frame of E7 enhances specific cytotoxic T-lymphocyte induction and antitumor activity. J Virol 1999;73:7877-7881.
De Marco F, Hallez S, Brulet JM, Gesche F, Marzano P, Flamini S, et al. DNA vaccines against HPV-16 E7-expressing tumour cells. Anticancer Res 2003;23:1449-1454.
Han R, Cladel NM, Reed CA, Peng X, Christensen ND. Protection of rabbits from viral challenge by gene gun-based intracutaneous vaccination with a combination of cottontail rabbit papillomavirus E1, E2, E6 and E7 genes. J Virol 1999:7039-7043.
He Z, Wlazlo AP, Kowalczyk DW, Cheng J, Xiang ZQ, Giles-davis W, et al.Viral recombinant vaccines to the E6 and E7 antigens of HPV-16. Virol 2000;270:146-161.
Chiriva-Internati M, Lui Y, Salati E, Zhou W, Wang Z, Grizzi F, et al. Efficient generation of cytotoxic T lymphocytes against cervical cancer cells by adeno-associated virus/human papillomavirus type 16 E7 antigen gene transduction into dendritic cells. Eur J Immunol 2002 ;32:30-38.
Boursnell ME, Rutherford E, Hickling JK, Rollinson EA, Munro AJ, Rolley N, et al. Construction and characterization of a recombinant vaccinia virus expressing human papillomavirus proteins for immunoterapy of cervical cancer. Vaccine 1996;14:1485-1494.
Velders MP, McElhiney S, Cassetti MC, Eiben GL, Higgins T, Kovacs GR, et al. Eradication of established tumors by vaccination with Venezuelan equine encephalitis virus replicon particles delivering human papillomavirus 16 E7 RNA. Cancer Res 2001;61:7861-7867.
Reuter JD, Vivas-Gonzalez BE, Gomez D, Wilson JH, Brandsma JL, Greenstone HL, et al. Intranasal vaccination with a recombinant vesicular stomatitis virus expressing cottontail rabbits papillomavirus L1 protein provides complete protection against papillomavirus-induced disease. J Virol 2002;76:8900-8909.
Shi W, Liu J, Huang Y, Qiao L. Papillomavirus pseudovirus: a novel vaccine to induce mucosal and systemic cytotoxic T-lymphocytes responses. J Virol 2001;75:10139-10148.
Gunn GR, Zubair A, Peters C, Pan ZK, Wu TC, Paterson Y. Two Listeria monocytogenes vaccine vectors that express different molecular forms of human papillomavirus-16 (HPV-16) E7 induce qualitatively different T cell immunity that correlates with their ability to induce regression of established tumors immortalized by HPV-16. J Immunol 2001;167:6471-6479.
Lin CW, Lee JY, Tsao YP, Shen CP. Lai HC, Chen SL. Oral vaccination with recombinant Listeria monocytogenes expressing human papillomavirus type 16 E7 can cause tumor growth in mice to regress. Int J Cancer 2002;629-637.
Revaz V, Benyacooub J, Kast WM, Schiller JT, De Grandi P, Nardelli-Haefliger D. Mucosal vaccination with a recombinant Salmonella typhimurium expressing human papillomavirus type 16 (HPV16) L1 virus-like particles (VLPs) or HPV16 VLPs purified from insect cells inhibits the growth of HPV16-expressing tumors cells in mice. Virology
Jabbar IA, Fernando GJ, Saunders N, Aldovini A, Young R, Malcolm K, Frazer IH. Immune responses induced by BCG recombinant for human papillomavirus L1 and E7 proteins. Vaccine 2000;18:2444-2453.
Liu DW, Tsao YP, Hsieh JT, Kung JT, Chiang CL, Huang SJ, et al. Induction of CD8 T cells by vaccination with recombinant adenovirus expressing human papillomavirus type 16 E5 gene reduces tumor growth. J Virol 2000;74:9083-9089.
Morosov A, Phelps CW, Raychaudhuri P. Activation of the c-fos gene by the HPV16 oncoprotein depends upon the cAMP-response elements at –60. J Biol Chem 1994;269:18434-18440.
Show-Li C, Ying-Kuang L, Long-Yuan L, Yeou-Ping T, Hsiang-Yun L, Won-Bo W, et al. E5 proteins of human papillomavirus types 11 and 16 transactivate the c-fos promoter througt the NF1 binding element. J Virol 1996;70:8558-8563.
Dey A, Atcha IA, Bagchi S. HPV 16 E6 oncoprotein stimulates the transforming growth factor-b1 promoter in fobroblast through a specific GC-rich sequence. Virology 1997;228:190-199.
Kaufman AM, Gissman L, Simms P, Schreckenberger C, Qioa L. Comparation of cytokines and CD80 for enhancement of immunogenicity of cervical cancer cells. Immunobiol 2000;202:339-352.
Idrova M, Mikyskova R, Jandlova T, Vonka V, Bubenik J, Bieblova J. Adjuvant cytokine treatment of minimal residual disease after surgical therapy in mice carrying HPV16-associated tumours: cytolytic activity of spleen cells from tumour regressors. Folia Biol 2003;49:217-222.
Vilcek J, Sen GC. Interferons and other cytokines: In: Fields BN, Knipe DM, Howley PM, ed. Fields Virology. Philadelphia: Lippincott-Raven.(OJO:AÑO)
Koromilas AE, Li S, Matlashewski G. Control of interferon signaling in human papillomavirus infection. Cytokine Growth Factor Rev 2001;12:157-170.
Wadler S, Burk RD, Neuberg D, Rameau R, Runowicz CD, Goldberg G, et al. Lack of efficacy of interferon-alpha therapy in recurrent advanced cervical cancer. J Interferon Cytokine Re 1995;15:1011-1016.
Sikorski M, Zrubek H. Long-term follow-up of patients treated with recombinant human interferon gamma for cervical intraepithelial neoplasia. Int J Gynaecol Obstet 2003;82:179-85
Brickelmaier M, Carmillo A, Goelz S, Barsoum J, Qin XQ. Cytotoxicity of combinations of IFN-beta and chemotherapeutic grugs. J Interferon Cytokine Res 2002;22:873-880.
Yoshida J, Mizuno M, Wakabayashi T. Inteferon-beta gene therapy for cancer: Basic research to clinical application. Cancer Sci 2004;95:858-865.
Qin X, Tao N, Dergay A, Moy P, Fawell S, Davis A, et al. Interferonbeta gene therapy inhibits tumor formation and causes regression of established tumors in immune-deficient mice. Proc Natl Acad Sci USA 1998;95:14411-14416.
Whittington R, Fauds D. Interleukin-2. A review of its pharmacological properties and therapeutic use in patients with cancer. Drugs 1993;46:446-514.
Yang JH, Fan RF, Qian QJ, You TG, Xue HB, Su CQ, et al. Treatment of hepatocellular carcinoma by transfecting interleukin-12 and interleukin 2 fusion gene intraplenically, an experimental study. Zhonghua Yi Xue Za Zhi 2003;10:740-743.
Lui SX, Yang H, Yuan YM, Guo YF. Tang ZQ, Liang CY. Combination radiation and gene therapy for head and neck squamous cell carcinoma in the murine model. Zhonghua Er Bi Yan Hou Ke Za Zhi 2004;39:278-282.
Vlk V, Rossner P, Indrova M, Bubenik J, Sobota V. Interleukin-2 gene therapy of surgical minimal residual tumour disease. Int J Cancer 1998;30:115-119.
Bubenik J, Simova J, Zeuthen J, Diamant M, Jandlova T, Bubenikova D. Gene therapy of plastocytoma: comparison of the therapeutic efficacy of tumour cells transduced with the interleukin-2, interleukin-4, or interleukin-6 genes. Folia Biol 1994;40:29-36.
Deshmukh P. Glick RP, Lichtor T, Moser R, Cohen EP. Immunogene therapy with interleukin-2-secreting fibroblasts for intracerebrally metastasizing breast cancer in mice. J Neurosurg 2001;94:287-292.
Jiang Q, Da W, Ou Y. Experimental study of interleukin-12 gene vaccines in the treatment of low-load malignant lymphoma (EL4). Zhonghua Xue Ye Xue Za Zhi 2001;22:565-568.
Indrova M, Mikyskova R, Jandlova T, Vonka V, Bubenik J, Bieblova J. Adjuvant cytokine treatment of minimal residual disease after surgical therapy in mice carrying HPV16-associated tumours: cytolytic activity of spleen cells from tumour regressors. Folia Biol 2003;49:217-222.
Bubenik J, Mikyskova R, Vonka V, Mendoza LÑ, Simova J, Smahel M, et al. Interleukin-2 and dendritic cells as adjuvants for surgical therapy of tumours associated with human papillomavirus type 16. Vaccine 2003;21:891-896.
Bubenik J, Simova J, Hajkova R, Sobota V, Jandlova T, Smahel M, et al. Interleukin 2 gene therapy of residual disease in mice carrying tumours induced by HPV 16. Int J Oncol 1999;14:593-597.
Indrova M, Bubenik J, Mikyskova R, Vonka R, Smahel M, Zak R, et al. Tumour-inhibitory and antimetastatic effects of IL-2 in mice carrying MHC class I-tumours of HPV16 origin. In J Oncol 2002;20:643-646.
Mikyskova R, Bubenik J, Mendoza L, Vonka V, Smahel M, Simova J, et al. Local cytokine treatment of HPV16-associated tumours results in inhibition of their lung metastases. Clin Exp Metastasis 2000;18:581-587.
Jinoch P, Zak R, Janouskova O, Kunke D, Rittich S, Duskova M, et al. Immunization with live HPV-16-transformed mouse cells expressing the herpes simplex thymidine kinase and either GM-CSF or IL-2. Int J Oncol 2003;23:775-783.
Mikyskova R, Indrova M, Simova J, Jandlova T, Bieblova J, Jinoch P, et al. Treatment of minimal residual disease after surgery or chemotherapy in mice carrying HPV16-associated tumours: Cytokine and gene therapy with IL-2 and GM-CSF. Int J Oncol 2004;24:161-167.
Chen J, Cao XY, Zhang P, Peng ZL, Yang YL,Bi JH. Study on the TIL and NK of IL-2 injected via pelvic retroperitoneal space in gynecological cancer patient. SiChuan Da Xue Xue Bao Yi Xue Ban 2004;35:406-408.
Verma V, Sharma V, Shrivastava SK, Nadkarni JJ. IL-12, IL-2 potentiate the in vitro tumor-specific activity of peripherial blood cells from cervical cancer patients. J Exp Clin Cancer Res 2000;19:367-374.
Casana PH, Hernandez H, Arana MJ. Interleukin-2 inhibits proliferation of HPV-associated tumor cells and halts tumor growth in vivo. Biochem Biophys Res Commun 2002;299:818-824.
Simons JW, Mikhak B, Chag JF, DeMarzo AM, Carducci MA, Lim M, et al. Induction of immunity to prostate cancer antigens: Results of a clinical trial of vaccination with irradiated autologous protate tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor using ex vivo gene transfer. Cancer Research 1999;59:5160-5168.
Pan PY, Li Y, Li Q, Gu P, Martinet O, Thung S, et al. In situ recruitment of antigen-presenting cells by intratumoral GM-CSF gene delivery. Cancer Immunol Immunother 2004;53:17-25.
Nelson WG, Simons JW, Mikhak B, Chang JF, DeMazo AM, Carducci MA, et al. Cancer cells engineered to secrete granulocyte-macrophage colony-stimulating factor using ex vivo gene transfer as vaccines for treatment of genitourinary malignancies. Cancer Chemother. Pharmacol 2000;46:S67-72.
Li J, Bouton-Verville H, Holmes LM, Burgin KE, Jakubchak S, Yu X, et al. Inhibition or promotion of tumor growth by granulocytesmacrophage colony-stimulating factor derived from engineered tumor cells is dose-dependent. Anticancer Res 2004;24:2717-2721.
Chang EY, Chen CH, Ji H, Wang TL, Lee BP, Huang AY, et al. Antigenspecific cancer immunotherapy using a GM-CSF secreting allogeneic tumor cell based vaccine. Int J Cancer 2000;86:725-730.
Leachman SA, Tigelaar RE, Schlyankevich M, Slade MD, Irwin M, Chang E, et al. Granulocyte-macrophage colony-stimulating factor priming plus papillomavirus E6 DNA vaccination: effects on papilloma formation and regression in the cottontail rabbit papillomavirus-rabbit model. J Virol 2000;74:8700-8708.
Song K, Chang Y, Prud´homme GJ. IL-12 plasmid-enhanced DNA vaccination against carcinoembryonic antigen (CEA) studied in immune gene knockout mice. Gene Therapy 2000;7:1527-1535.
Thomas GR, Chien Z, Enamorado I, Bancroft C Van,Waes C. IL-12 and IL-2- induced tumor regression in a new murine model of oral squamous-cell carcinoma is promoted by expression of the CD80 costimulatory molecule and interferon-g. Int J Cancer 2000;86:368-374.
Hull GW, Mccurdy MA, Nasu Y, Bangma, Yang G, Shimura S, et al. Prostate cancer gene therapy: comparison of adenovirus-mediated expression of inteleukin 12 with interleukin 12 plus B7-1 for in situ gene therapy and gene-modified cell-based vaccines. Clin Cancer Res 2000;6:4101-4109.
Lui VW, He Y, Falo L, Huang L. Systemic administration of naked DNA encoding interleukin 12 for the treatment of human papillomavirus DNA-positive tumor. Hum GeneTher 2002;13:177-185.
He YK, Lui VW, Baar J, Wang L, Shurin M, Almonte C, et al. Potentiation of E7 antisense RNA-induced antitumor immunity by codelivery of IL-12 gene in HPV16 DNA-positive mouse tumor. Gene Ther 1998;5:1462-1471.
Ahn WS, Bae SM, Kim TY, Kim TG, Lee JM, Namkoong SE, et al. A therapy modality using recombinant IL-12 adenovirus plus E7 protein in a human papillomavirus 16 E6/E7-associated cervical cancer animal model. Hum Gene Ther 2003;14:1389-1399.
Hallez S, Detremmerie O, Giannouli C, Thielemans K, Gajewski TF, Burny A et al. Interleukin-12-secreting human papillomavirus type 16-transformed cells provide potent cancer vaccine that generates E7-directed immunity. Int J Cancer 1999;81:428-437.
Indrova M, Bubenik J, Mikyskova R, Mendoza L, Simova J, Bieblova J, et al. Chemoimmunotherapy in mice carrying HPV16-associated, MHC class I+ and class I-tumours : Effects of CBM-4A potentiated with IL-2, IL-12, GM-CSF and genetically modified tumour vaccines. Int J Oncol 2003;22:691-695.
Tan J, Yang NS, Turner JG, Niu GL, Maassab HF, Sun J, et al. Interleukin-12 cDNA skin transfection potentiates human papillomvirus E6 DNA vaccine-induced antitumor immune response. Cancer Gene Ther 1999;6:331-339.
Janouskova O, Sima P, Kunke D. Combined suicide gene and immunostimulatory gene therapy using AAV-mediated gene transfer to HPV-16 transformed mouse cell: decrease oncogenicity and induction of protection. Int J Oncol 2003;22:569-577.