<< Back Next >>
Rev Cubana Med Trop 2016; 68 (1)
Language: Spanish
References: 25
Page: 95-104
PDF size: 149.59 Kb.
ABSTRACT
Introduction: Dengue and chikungunya are anthroponotic virus infections
transmitted by
Aedes aegypti mosquitoes. These conditions affect large areas of the
American continent, including Costa Rica. The recent introduction of Zika virus
infection is a new challenge for health systems. Given the absence of antiviral
treatment and vaccines,
Aedes aegypti control is the only alternative to minimize
the impact of these viral diseases. In Costa Rica chemical control of the vector is
based on the use of pyrethroids (cypermethrin and deltamethrin) and the
organophosphate larvicide temephos, hence the importance of detecting the
emergence of resistance to these insecticides.
Objective: Determine the level of resistance to temephos, cypermethrin and
deltamethrin in three
Aedes aegypti strains from the Caribbean region of Costa
Rica, as well as the corresponding enzymatic detoxification mechanisms.
Methods: Resistance to temephos, cypermethrin and deltamethrin was evaluated
with larval bioassays. Groups of 20 larvae were exposed to 5 insecticide
concentrations for 24 hours. Mortality ranged between 2 and 100%. Each
concentration was evaluated by means of five replications, and estimation was
performed of the concentration causing 50% lethality (CL
50). The Rockefeller
strain was used as susceptible control. Each strain underwent estimation of a 50%
resistance factor (RF
50) for each insecticide. Whenever resistance was observed,
the bioaasays were repeated with prior exposure of the larvae to piperonyl butoxide
(PBO) and S.S.S. phosphotrithiate tributyl (DEF) to evaluate the corresponding
detoxification mechanism.
Results: None of the strains evaluated was resistant to temephos. Incipient resistance
to cypermethrin was detected in strains Guápiles and Limón (CL
50 = 0.01022,
RF
50 = 7.35 and CL
50 = 0.01016, RF
50 = 7.30, respectively), whereas resistance to deltamethrin was detected in the Siquirres strain (CL
50 = 0.01973 mg/L, RF
50 = 12.64). In the above-mentioned cases resistance decreased when pre-treatment with PBO was provided, indicating the presence of detoxification mediated by the Cyt P450
monooxygenase system.
Conclusions: Results show that temephos continues to be effective for larval
control of Aedes aegypti in the main areas of the Caribbean region of Costa Rica. A
warning is hereby given about the emergence of pyrethroid resistance, leading to
the need to optimize monitoring processes and the implementation of other
chemical control alternatives.
REFERENCES
Jansen CC, Beebe NW. The dengue vector Aedes aegypti: what comes next. Microbes and Infection. 2010;12:272-9.
Marcondes CB, Freire de Melo-Ximenes MFF. Zika virus in Brazil and the danger of infestation by Aedes (Stegomyia) mosquitoes. Revista da Sociedade Brasileira de Medicna Tropical. 2015; http://dx.doi.org/10.1590/0037-8682-0220-2015
Morice-Trejos A, Marín-Rodríguez R, Ávila-Agüero ML. El dengue en Costa Rica: evolución histórica, situación actual y desafíos. En: Escuela de Salud Pública (UCR). Estado actual, retos y perspectivas. Sistema Editorial y de difusión de la información. Universidad de Costa Rica. 2010.
Troyo A, Porcelain SL, Calderón-Arguedas O, Chadee DD, Beier JC. Dengue in Costa Rica: the gap in local scientific research. Rev Panam Salud Pública. 2006;20:350-60.
Situación del dengue 2016 [base de datos en internet]. Ministerio de Salud de Costa Rica [citado 3 mar 2016]. Disponible en: https://www.ministeriodesalud.go.cr/index.php/vigilancia-de-la-salud/analisis-desituacion- de-salud
Situación de chikungunya 2015 [base de datos en internet]. Ministerio de Salud de Costa Rica [citado 3 mar 2016]. Disponible en: https://www.ministeriodesalud.go.cr/index.php/vigilancia-de-la-salud/analisis-desituacion- de-salud
Fauci A, Morens DM. Zika virus in the Americas-Yet another arbovirus threat. N Engl J Med. 2016; DOI: 10.1056/NEJMp1600297.
Avalos A. Salud confirma ocho casos autóctonos de Zika en Costa Rica; todos en Nicoya. La Nación. 2016 Mar 12; Sec Nacional.
Bisset JA, Marín R, Rodríguez MM, Severson DW, French L, Díaz M, et al. Insecticide resistance in two Aedes aegypti (Diptera: Culicidae) strains from Costa Rica. Vector Control. J Med Entomol. 2013;50:352-61.
Calderón-Arguedas O, Troyo A. Perfil de resistencia a insecticidas en una cepa de Aedes aegypti (Linnaeus) de la Región Caribe de Costa Rica. Rev Cubana Med Trop. 2014;66:351-9.
World Health Organization. Instructions for determining the susceptibility or resistance of adult mosquitos to organochlorine, organophosphate and carbamate insecticides diagnostic test,1981;WHO/VBC/81,806.
Bisset J, Blanco S, Braga I, Coto H, Massuh H, Moncayo A, et. al. Protocolo para determinar la susceptibilidad o resistencia a insecticidas de mosquitos de la especie Ae. aegypti. Puerto Iguazú: Fundación Mundo Sano/Red Latinoamericana de Control de Vectores (RELCOV);2005.
Mazzari MB, Geroghiou GP. 1995. Characterization of resistance to organophosphate, carbamate, and pyrethroid insecticides in field populations of Aedes aegypti from Venezuela. J Am Mosq Cont Assoc. 11:315-322.
Bisset JA, Rodríguez MM, Cáceres L. Niveles de resistencia a insecticidas y sus mecanismos en 2 cepas de Aedes aegypti de Panamá. Rev Cubana Med Trop. 2003;55:191-5.
Bisset JA. Uso correcto de insecticidas: control de la resistencia. Rev Cubana Med Trop. 2002;54:202-19.
Cáceres-Carrera L. Determinación de la resistencia a insecticidas y sus mecanismos en poblaciones de Aedes aegypti (Diptera: Culicidae) en algunos países de América Central [dissertation]. Ciudad de la Habana: Instituto de Medicina Tropical Pedro Kouri; 2013.
Grisales N, Poupardin R, Gomez S, Fonseca-Gonzalez I, Ranson H, Lenhart A. Temephos resistance in Aedes aegypti in Colombia compromises Dengue Vector Control. PLoS Negl Trop Dis. 2013;7: e2438.
Rodríguez MM, Bisset J, de Fernández DM, Lauzán L, Soca A. Detection of insecticide resistance in Aedes aegypti (Diptera: Culicidae) from Cuba and Venezuela. J Med Entomol. 2001;38:623-8.
Lima JB, Da-Cunha MP, Da Silva RC, Galardo AK, Soares-Sda S, Braga IA, et al. Resistance of Aedes aegypti to organophosphates in several municipalities in the State of Rio de Janeiro and Espirito Santo, Brazil. Am J Trop Med Hyg. 2003;68:329-33.
Albrieu-Llinás GA, Seccacini E, Gardenal CN, Licastro S. Current resistance status to temephos in Aedes aegypti from different regions of Argentina. Mem Inst Oswaldo Cruz. 2010;105:113-6.
Àlvarez E, Briceño A, Oviedo M. Resistencia al temephos en poblaciones de Aedes aegypti (Diptera: Culicidae) del occidente de Venezuela. Revista Colombiana de Entomología. 2006;32:172-5.
Abbas A, Abbas RZ, Khan JA, Iqbal Z, Batí MMH, Sindhu ZD, et al. Integrated Strategies for the Control and Prevention of Dengue Vectors with Particular Reference to Aedes aegypti. Pak Vet J. 2014;1-10.
Pereira da-Cunha M, Pereira-Lima JB, Brogdon WG, Moya GE, Valle D. Monitoring of resistance to the pyrethroid cypermethrin in Brazilian Aedes aegypti (Diptera: Culicidae) populations collected between 2001 and 2003. Mem Inst Oswald Cruz. 2005;100:441-4.
Trejo-Trejo E. Pérdida y recuperación de la resistencia al insecticida permetrina en el mosquito Aedes aegypti (Dipera:Culicidae) procedente de Ciudad Valles, San Luis Potosí [dissertation]. Montecillo, Texcoco, Edo de México: Instituto de enseñanza e investigación en Ciencias Agrícolas; 2014.
Kasai S, Komagata O, Itokawa K, Shono T, Ng LC, Kobayashi M, et al. Mechamism of pyethroid resitance in the dengue mosquito vector, Aedes aegypti: target site insensitivity, penetration, and metabolism. PloS Negl Trop Dis. 214;8:e2948.