2016, Number 1
<< Back Next >>
Rev Cubana Med Trop 2016; 68 (1)
Insecticide resistance and its biochemical mechanisms in Aedes aegypti mosquitoes from the municipality of Boyeros in the years 2010 and 2012
Bisset LJA, Rodríguez CMM, Hurtado ND, Hernández AH, Valdéz MV, Fuentes LI
Language: Spanish
References: 27
Page: 82-94
PDF size: 232.67 Kb.
ABSTRACT
Introduction: The program for control of
Aedes aegypti (L.) (
Diptera: Culicidae) in
Cuba is mainly based on the use of temephos (Abate) as larvicide and pyrethroids
as adulticides. Organophosphate (OP) insecticide Chlorpyrifos has also been used
on occasion. Monitoring resistance to these insecticides is essential to achieve
effective control of the species.
Objective: Determine temephos resistance in larvae and its mechanisms, and
evaluate the level of resistance to the insecticides most commonly used as
adulticides in five health areas from the municipality of Boyeros, Havana, surveyed
in the years 2010 and 2012.
Methods: An evaluation was conducted of resistance to and effectiveness of
temephos in its commercial formulation (Abatex G1) in larvae, using tests
recommended by the World Health Organization. Resistance mechanisms were
assessed with biochemical assays. The impregnated bottle bioassay was used to
determine resistance in the adult stage.
Results: Larval resistance to temephos decreased from 2010 to 2012. The
commercial product temephos showed 100% mortality between 5 and 12 days.
Esterases and monooxygenases were found to play an important role in larval
resistance to temephos. Some strains showed resistance to pyrethroids and
Chlorpyrifos in the adult stage.
Conclusions: These results corroborate the need to set up integrated control
strategies to preserve the useful life of the insecticides available to control
Aedes
aegypti in the municipality of Boyeros.
REFERENCES
World Health Organization (WHO). Report of the Scientific Working Group on Dengue. WHO/TDR/SWG/08. WHO, Geneva, 2006.
Logjam N, McCarran L, Prapanthadara L, Hemingway J, Ranson H. Elevated activity of an Epsilon class glutathione transferase confers DDT resistance in the dengue vector, Aedes aegypti. Insect Biochem Mol Biol. 2005;35:861-71.
Rodriguez MM, Bisset JA, De Armas Y, Ramos F. Pyrethroid insecticide-resistant strain of Aedes aegypti from Cuba induced by deltamethrin selection. J Am Mosq Control Assoc. 2005;21:437-45.
Rodríguez MM, Bisset JA, Fernández D. Levels of insecticide resistance and resistance mechanisms in Aedes aegypti (Diptera: Culicidae) from some latinamerican countries. J Am Mosq Control Assoc. 2007;24:420-9.
Bisset JA, Rodríguez MM, Ricardo Y, Ranson H, Pérez O, Moya M, Vázquez A. Temephos resistance and esterase activity in the mosquito Aedes aegypti in Havana, Cuba increased dramatically between 2006 and 2008. Med Vet Entomol. 2011;25:233-9.
Rodríguez MM, Bisset, J.A, Soca A. Cross-resistance to pyrethroid and organophosphorus insecticides induced by selection with temephos in Aedes aegypti (Diptera: Culicidae) from Cuba. J Med Entomol. 2002;39:882-8.
Pérez O, Rodríguez J, Bisset J, Leyva M, Díaz M, Fuentes O, Ramos F, González R, García I. Manual de indicaciones. Técnica para insectarios. Editoral Ciencias Médicas, 2004.
MS. Instructions for determining the susceptibility or resistance of mosquito larvae Aedes to insecticides. Geneva: WHO/VBC/81.807. 1981,1-6.
Pardo A, Ruiz MA. SPSS 11. Guía para el análisis de datos. Madrid, McGraw Hill, 2002.
Mazzarri MB, Georghiou GP. Characterization of resistance to organophosphate, carbamate and pyrethroid insecticides in field populations of Aedes aegypti from Venezuela. J Am Mosq Control Assoc. 1995;11:315-22.
Peiris HT, Hemingway J. Effect of fenthion treatment on larval densities of insecticide-resistant Culex quinquefasciatus in an urban area of Sri Lanka. Med Vet Entomol. 1996;10:283-7.
Rodríguez MM, Bisset JA, Fernández D, Soca A. Adaptación de los métodos en placas de microtitulación para la cuantificación de la actividad de esterasas y glutation-s-transferasa en Aedes aegypti (L). Rev Cubana Med Trop. 2001;53:32-6.
Brogdon WG, McAllister JC, Vulule J. Heme peroxidase activity measured in single mosquitoes identifies individuals expressing an elevated oxidase for insecticide resistance. J Am Mosq Control Assoc. 1997;13:233-7.
Brogdon WG, McAllister JC. Simplification of adult mosquito bioassays through use of time-mortality determinations in glass bottles. J Am Mosq Control Assoc. 1998;14:159-64.
Guías CDC. Guideline for Evaluating Insecticide Resistance in Vectors Using the CDC Bottle Bioassay. In: BROGDON, G. & CHAN, B. H. (eds.) 1 ed.: Centers for Disease Control and Prevention. 2010.
Rodríguez MM, Bisset JA, Milá LH, Lauzán L, Soca LA. Niveles de resistencia a insecticidas y sus mecanismos en una cepa de Aedes aegypti de Santiago de Cuba. Rev Cubana Med Trop. 1999;51:83-8.
Rodríguez MM, Bisset JA, Fernández D, Pérez O. Resistencia a insecticidas en larvas y adultos de Aedes aegypti: prevalencia de la esterasa A4 asociada con la resistencia a temefos. Rev Cubana Med Trop. 2004;56:54-60.
Bisset JA, Rodríguez MM, Fernández D, Pérez O. Estado de la resistencia a insecticidas y mecanismos de resistencia en larvas del municipio Playa, colectadas durante la etapa intensiva contra el Aedes aegypti en Ciudad de La Habana, 2001-2002. Rev Cubana Med Trop. 2004;56:61-6.
Rodríguez MM, Bisset JA, Pérez O, Montada D, Moya M, Ricardo Y, Valdés V. Estado de la resistencia a insecticidas y sus mecanismos en Aedes aegypti en el municipio Boyeros. Rev Cubana Med Trop. 2009;61:40-51.
Montella IR, Martins AJ, Viana-Medeiros PF, Lima JB, Braga IA, Valle D. Insecticide resistance mechanism of Brazilian Aedes aegypti populations from 2001 to 2004. Am J Trop Med Hyg. 2007;77:467-77.
Rodríguez MM, Bisset JA, Fernández D. Levels of insecticide resistance and resistance mechanism in Aedes aegypti from some Latin American countries. J Am Mosq Control Assoc. 2007;23:420-9.
Macoris M de L, Andrrighetti MT, Takaku L, Glasser CM, Garbeloto VC, Braco, JE. Resistance of Aedes aegypti from the state of Sao Paulo, Brazil, to organophosphate insecticides. Mem Inst Oswaldo. 2003;98:703-8.
Saelim V, Brogdon WG, Rojanapremsuk J, Suvannadaba S, Pandii W, Jones JW, et al. Bottle and biochemical assays on temephos resistance in Aedes aegypti in Thailand. Southeast Asian J Trop Med Pub Health. 2005;36:417-25.
Dhang CH, Ahmad NW, Lim, LH, Benjamin S, Sofian-Azirun M. Biochemical detection of temephos resistance in Aedes (Stegomyia) aegypti (Linnaeus) from dengue-endemic areas of Selangor State, Malaysia. Parasitol. 2008;36-42.
Montada D, Zaldívar J, Sánchez F, Figueredo D, Suárez S, Leyva M. Eficacia de los tratamientos intradomiciliarios con los insecticidas cipermetrina, lambdacialotrina y clorpirifos en una cepa de Aedes aegypti. Rev Cubana Med Trop. 2006;58:130-5.
Montada D, Leyva M, Silva Y, Marquetti MC, Castex M. Susceptibilidad de 3 cepas de Aedes aegypti asociada con la aplicación de 3 insecticidas. Rev Cubana Med Trop. 2009;61(2). Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0375- 07602009000200011&lng=es
Bisset JA, Rodríguez MM, Ricardo Y, Perez O, Moya M, Montada D, Gato R. Efectividad de formulaciones de insecticidas para el control de Aedes aegypti de Ciudad de la Habana, Cuba. Rev Cubana Med Trop. 2011;63:166-70.