2016, Number 2
<< Back Next >>
Anales de Radiología México 2016; 15 (2)
T2 gradient echo sequence versus susceptibility-weighted angiography sequence in detecting microhemorrhages in hypertensive patients
Torres-Gómez E, Onofre-Castillo JJ, Santana-Vela IA, Hernández-Salazar JJ, García-Concha A, Martínez-Aparicio JS, Cuituny-Romero AK
Language: Spanish
References: 24
Page: 94-102
PDF size: 476.02 Kb.
ABSTRACT
Introduction: cerebral microhemorrhages are deposits of hemosiderin
in small blood vessels produced by microangiopathic processes and
represent a risk for the development of strokes; in magnetic resonance
they appear as rounded focal areas with lack of signal.
Objetive: compare T2 gradient echo and SWAN (susceptibilityweighted
angiography) magnetic resonance sequences in describing
cerebral microhemorrages in hypertensive patients.
Material and Methods: a transverse, descriptive, observational
study in a group of hypertensive patients admitted to Hospital Christus
Muguerza Alta Especialidad de Monterrey and who underwent magnetic
resonance.
Results: fifty-seven patients were included (35 men and 22 women)
with mean age of 63 years. Seventeen had microhemorrhages detected
with susceptibility-weighted angiography (SWAN) sequence and 15
with T2 gradient echo sequence, the majority with lobar localization.
On comparing the procedures one-to-one, the SWAN showed a larger
number of microhemorrhages.
Conclusion: both sequences are useful to detect the presence, localization,
and degree of cerebral microhemorrhages, but the susceptibilityweighted
angiography sequence proved to be more useful in detecting
the total number of microhemorrhages.
REFERENCES
Fazekas F, Kleinert R, Roob G, Kleinert G, Kapeller P, Schmidt R, Hartung HP. Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: Evidence of microangiopathy-related microbleeds. Am J Neuroradiol. 1999;20:637-642.
Jeerakathil T, Wolf PA, Beiser A, Hald JK, Au R, Kase CS, et al. Cerebral microbleeds: prevalence and associations with cardiovascular risk factors in the Framingham Study. Stroke 2004;35:1831-5.
Walker DA, Broderick DF, Kotsenas AL, Rubio FA. Routine use of gradient-echo MRI to screen for cerebral amyloid angiopathy in elderly patients. AM J Roentgenol 2004;182:1547-1550.
Kinoshita T, Okudera T, Tamura H, Ogawa T, Hatazawa J, Assessment of lacunar hemorrhage associated with hypertensive stroke by echo-planar gradient-echo T2*-weighted MRI. Stroke. 2002;31:1646-1650.
Kato H, Izumiyama M, Izumiyama K, Takahashi A, Itooyama Y. Silent cerebral microbleeds on T2*-weighted MRI: correlation with stroke subtype, stroke recurrence, and leukoaraiosis. Stroke. 2002;33:1536-1540.
Nighoghossian N, Hermier M, Adeleine P, Blanc-Laserre K, Derex L, Honnorat J, Philippeau F, Dugor JF, Froment JC, Trouillas P. Old microbleeds are a potential risk factor for cerebral bleeding after isquemic stroke: a gradient-echo T2*-weighted brain MRI study. Stroke. 2002;33:735-742.
Blitstein MK, Tung GA. MRI of cerebral microhemorrhages. Am J Roentgenol 2007;189:720–725.
Wong KS, Chan YL, Liu JY, Gao S, Lam WW. Asymptomatic microbleeds as a risk factor for aspirin-associated intracerebral hemorrhages. Neurology 2003;60(3):511-513.
Greenberg SM, Vernooij MW, Cordonnier C, et al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 2009;8:165-74.
Reichenbach JR, Venkatesan R, Schillinger DJ, Kido DK, Haacke EM. Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology 1997;204:272–277.
Tsushima Y, Aoki J, Endo K. Brain microhemorrhages detected on weighted gradient-echo MR images. Am J Neuroradiol 2003;24:88-96
Koennecke HC. Cerebral microbleeds on MRI: prevalence, associations, and potential clinical implications. Neurology 2006;66:165-71.
Haacke EM, Xu Y, Cheng YC, et al. Susceptibility weighted imaging (SWI). Magn Reson Med 2004;52:612–18.
Haacke EM, Cheng NY, House MJ, et al. Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 2005;23:1–25.
Sowers J. SWAN Designed for excellent visualization of vasculature and blood products [en línea] 2015. [Fecha de consulta: 18 de octubre del 2015]. Disponible en: http:// www3.gehealthcare.com/en/products/categories/magnetic_ resonanceimaging/neuro_imaging/swan
Roob G, Schmidt R, Kapeller P, Lechner A, Hartung HP, Fazekas F MRI evidence of past cerebral microbleeds in a healthy elderly population. Neurology 1999b;52:991-4
Lee SH, Bae HJ, Yoon BW, Kim H, Kim DE, Roh JK. Low concentration of serum total cholesterol is associated with multifocal signal loss lesions on gradient-echo magnetic resonance imaging: analysis of risk factors for multifocal signal loss lesions. Stroke. 2002;33:2845–2849.
Stangroom J, Social Science Statistics [en línea] 2014. [fecha de consulta: 23 de octubre del 2014]. Disponible en: http:// www.socscistatistics.com/Default.aspx
Kidwell CS, Saver JL, Villablanca JP. et al. Magnetic resonance imaging detection of microbleeds before thrombolysis. Stroke. 2002;33:95-98.
Leblanc R, Haddad G, Robitaille Y. Cerebral hemorrhage from amyloid angiopathy and coronary thrombolysis. Neurosurgery 1992;31(3):586-590.
Chalela JA, Kang DW, Warach S. Multiple cerebral microbleeds: MRI marker of a diffuse hemorrhage-prone state. J Neuroimagin 2004;14(1):54-57.
McCarron MO, Nicoli JA. Cerebral amyloid angiopathy and thrombolysis-related intracerebral haemorrhage. Lancet Neurol 2004;3(8):484-492.
Greenberg SM. Cerebral amyloid angiopathy: prospects for clinical diagnosis and treatment. Neurology 1998;51(3):690-694.
Poels, M.M., Vernooij, M.W., Ikram, M.A., Hofman, A., Krestin, G.P., van der Lugt, A. et al. Prevalence and risk factors of cerebral microbleeds: an update of the Rotterdam scan study. Stroke. 2010;41:S103–S106.