2016, Number 1
<< Back
Rev Invest Clin 2016; 68 (1)
The Role of Neuroinflammation in Age-Related Dementias
López-Valdés HE, Martínez-Coria H
Language: English
References: 117
Page: 40-48
PDF size: 194.58 Kb.
ABSTRACT
The most common dementias such as Alzheimer’s disease, vascular dementia, Lewy body dementia, and frontotemporal
dementia are associated with a decline in cognitive and social abilities. Although the molecular mechanisms of tissue damage
in these dementias are not completely understood, these neurodegenerative illnesses share certain alterations such as neuroinflammation
and gliosis. Increasing evidence suggests that microgliosis and astrogliosis play a key role in neuroinflammation
observed in these dementias. Here we provide an overview of the participation of microglia and astrocytes in the neuroinflammatory
response in common dementias.
REFERENCES
Minghetti L. Role of inflammation in neurodegenerative diseases. Curr Opin Neurol. 2005;18:315-21.
Actor JK. A Functional Overview of the Immune System and Immune Components. In: Actor JK (ed.) Introductory Immunology: Basic Concepts for Interdisciplinary Applications. London, UK: Academic Press; 2014. p. 1-15.
Licastro F, Candore G, Lio D, et al. Innate immunity and inflammation in ageing: a key for understanding age-related diseases. Immun Ageing. 2005;18:2:8.
Shastri A, Bonifati DM, Kishore U. Innate immunity and neuroinflammation. Mediators Inflamm. 2013;2013:342931.
Bernardino L, Malva JO. Inflammation and neuronal susceptibility to excitotoxic cell death. In: Malva JO, (ed.) Interaction between Neurons and Glia in Aging and Disease. Boston, MA, USA: Springer; 2007. p. 3-36.
Moore CS, Durafourt BA, Antel JP. Innate immunity in the CNS – a focus on the myeloid cell. In: Woodroofe N, Amor S (eds.) Neuroinflammation and CNS Disorders. West Sussex, UK: John Wiley & Sons, LTD; 2014. p. 9-35.
Wood P. The immediate response to infection: innate immunity and the inflammatory response. In: Wood P (ed.) Understanding Immunology. 3rd ed. Harlow, England: Pearson; 2011. p. 22-48.
Broux B, Gowing E, Prat A. Glial regulation of the blood-brain barrier in health and disease. Semin Immunopathol. 2015;37: 577-90.
Lampron A, Elali A, Rivest S. Innate immunity in the CNS: redefining the relationship between the CNS and its environment. Neuron. 2013;78:214-32.
Alvarez JI, Dodelet-Devillers A, Kebir H, et al. The Hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science. 2011;334:1727-31.
Creagh EM, O’Neill LA. TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol. 2006;27:352-7.
Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol. 2009;27:519-50.
Etienne-Manneville S, Manneville JB, Adamson P, et al. ICAM- 1-coupled cytoskeletal rearrangements and transendothelial lymphocyte migration involve intracellular calcium signaling in brain endothelial cell lines. J Immunol. 2000;165:3375-83.
Nagyoszi P, Wilhelm I, Farkas AE, et al. Expression and regulation of toll-like receptors in cerebral endothelial cells. Neurochem Int. 2010;57:556-64.
Hellström M, Gerhardt H, Kalén M, et al. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol. 2001;153:543-53.
Graeber MB, Streit WJ, Kiefer R, et al. New expression of myelomonocytic antigens by microglia and perivascular cells following lethal motor neuron injury. J Neuroimmunol. 1990;27: 121-32.
Kovac A, Erickson MA, Banks WA. Brain microvascular pericytes are immunoactive in culture: cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysaccharide. J Neuroinflammation. 2011;8:139.
Cartier N, Lewis C-A, Zhang R, et al. The role of microglia in human disease: therapeutic tool or target? Acta Neuropathol (Berl). 2014;128:363-80.
Chen Z, Trapp BD. Microglia and neuroprotection. J Neurochem. 2015. [Epub ahead of print].
Noda M, Verkhratsky A. physiology of microglia. In: Kettenmann H, Ransom BR, (eds.) Neuroglia. 3rd ed. New York, NY, USA: Oxford University Press; 2013. p. 223-37.
Verkhratsky A, Butt AM. Microglia. In: Verkhratsky A, Butt AM, (eds.) Glial Physiology and Pathophysiology. West Sussex, UK: John Wiley & Sons, Ltd; 2013. p. 343-80.
Vukovic J, Colditz MJ, Blackmore DG, et al. Microglia modulate hippocampal neural precursor activity in response to exercise and aging. J Neurosci. 2012;32:6435-43.
Sundal C. Microglia: multiple roles in surveillance, circuit shaping, and response to injury. Neurology. 2014;82:1846.
Block ML, Zecca L, Hong J-S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007; 8:57-69.
Godbout JP, Johnson RW. Age and neuroinflammation: a lifetime of psychoneuroimmune consequences. Immunol Allergy Clin North Am. 2009;29:321-37.
Loane DJ, Byrnes KR. Role of microglia in neurotrauma. Neurother. 2010;7:366-77.
Streit WJ. Microglial senescence: does the brain’s immune system have an expiration date? Trends Neurosci. 2006;29: 506-10.
Hasegawa-Ishii S, Takei S, Chiba Y, et al. Morphological impairments in microglia precede age-related neuronal degeneration in senescence-accelerated mice. Neuropathol. 2011;31:20-8.
Ma L, Morton AJ, Nicholson LF. Microglia density decreases with age in a mouse model of Huntington’s disease. Glia. 2003; 43: 274-80.
Streit WJ, Braak H, Xue Q-S, et al. Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer’s disease. Acta Neuropathol (Berl). 2009;118:475-85.
Anderson MA, Ao Y, Sofroniew MV. Heterogeneity of reactive astrocytes. Neurosci Lett. 2014;565:23-9.
Kimelberg HK, Nedergaard M. Functions of astrocytes and their potential as therapeutic targets. Neurother. 2010;7:338-53.
Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol (Berl). 2010;119:7-35.
Sofroniew MV. Multiple roles for astrocytes as effectors of cytokines and inflammatory mediators. Neuroscientist. 2014;20: 160-72.
Sofroniew MV. Astrocyte responses to central nervous system injury and disease. In: Kettenmann H, Ransom BR (eds.) Neuroglia. 3rd Ed. New York, NY, USA: Oxford University Press; 2013. p. 653-64.
Han S, Rudd JA, Hu ZY, et al. Analysis of neuronal nitric oxide synthase expression and increasing astrogliosis in the brain of senescence-accelerated-prone 8 mice. Int J Neurosci. 2010; 120:602-8.
Jiang T, Cadenas E. Astrocytic metabolic and inflammatory changes as a function of age. Aging Cell. 2014;13:1059-67.
Jyothi HJ, Vidyadhara DJ, Mahadevan A, et al. Aging causes morphological alterations in astrocytes and microglia in human substantia nigra pars compacta. Neurobiol Aging. 2015;36: 3321-33.
Rodríguez JJ, Yeh C-Y, Terzieva S, et al. Complex and regionspecific changes in astroglial markers in the aging brain. Neurobiol Aging. 2014;35:15-23.
Gallo V, Mangin J-M. Physiology of oligodendrocytes. In: Kettenmann H, Ransom BR (eds.) Neuroglia. 3rd ed. New York, USA: Oxford University Press; 2013. p. 238-53.
Zeis T, Enz L, Schaeren-Wiemers N. The immunomodulatory oligodendrocyte. Brain Res. 2015. [Epub ahead of print].
Bajetto A, Bonavia R, Barbero S, et al. Chemokines and their receptors in the central nervous system. Front Neuroendocrinol. 2001;22:147-84.
Gruol DL, Nelson TE. Physiological and pathological roles of interleukin- 6 in the central nervous system. Mol Neurobiol. 1997; 15:307-39.
Hanke ML, Kielian T. Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clin Sci (Lond). 2011;121:367-87.
Deleidi M, Jäggle M, Rubino G. Immune aging, dysmetabolism, and inflammation in neurological diseases. Front Neurosci. 2015;9:172.
Franceschi C, Capri M, Monti D, et al. Inflammaging and antiinflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev. 2007; 128:92-105.
Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci. 2014;69(Suppl 1):S4-9.
Streit WJ, Xue Q-S. Human CNS immune senescence and neurodegeneration. Curr Opin Immunol. 2014;29:93-6.
Rodríguez-Arellano JJ, Parpura V, Zorec R, et al. Astrocytes in physiological aging and Alzheimer’s disease. Neuroscience. 2015. [Epub ahead of print].
Streit WJ, Xue Q-S, Tischer J, et al. Microglial pathology. Acta Neuropathol Commun. 2014;2.142.
WHO. Dementia. World Health Organization. Available at: http://www.who.int /mediacentre /factsheets/fs362/en/. Accessed September 29, 2015.
Rombouts SA, Barkhof F, Witter MP, et al. Unbiased whole-brain analysis of gray matter loss in Alzheimer’s disease. Neurosci Lett. 2000;285:231-3.
Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl J Med. 2010;362:329-44.
Zhang B, Gaiteri C, Bodea L-G, et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell. 2013;153:707-20.
in t’ Veld BA, Ruitenberg A, Hofman A, et al. Nonsteroidal antiinflammatory drugs and the risk of Alzheimer’s disease. N Engl J Med. 2001;345:1515-21.
Cunningham C, Campion S, Lunnon K, et al. Systemic inflammation induces acute behavioral and cognitive changes and accelerates neurodegenerative disease. Biol Psychiatry. 2009;65: 304-12.
Gandy S, Heppner FL. Microglia as dynamic and essential components of the amyloid hypothesis. Neuron. 2013;78:575-7.
Heneka MT, Kummer MP, Latz E. Innate immune activation in neurodegenerative disease. Nat Rev Immunol. 2014;14:463-77.
Hickman SE, El Khoury J. TREM2 and the neuroimmunology of Alzheimer’s disease. Biochem Pharmacol. 2014;88:495-8.
Cagnin A, Brooks DJ, Kennedy AM, et al. In-vivo measurement of activated microglia in dementia. Lancet. 2001;358:461-7.
Yasuno F, Kosaka J, Ota M, et al. Increased binding of peripheral benzodiazepine receptor in mild cognitive impairment-dementia converters measured by positron emission tomography with [11C]DAA1106. Psychiatry Res. 2012;203:67-74.
Heppner FL, Ransohoff RM, Becher B. Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci. 2015; 16:358-72.
Bamberger ME, Harris ME, McDonald DR, et al. A cell surface receptor complex for fibrillar beta-amyloid mediates microglial activation. J Neurosci. 2003;23:2665-74.
Khoury J El, Hickman SE, Thomas CA, et al. Scavenger receptormediated adhesion of microglia to beta-amyloid fibrils. Nature. 1996;382:716-9.
Paresce DM, Ghosh RN, Maxfield FR. Microglial cells internalize aggregates of the Alzheimer’s disease amyloid beta-protein via a scavenger receptor. Neuron. 1996;17:553-65.
Yan S Du, Zhu H, Fu J, et al. Amyloid-beta peptide-receptor for advanced glycation endproduct interaction elicits neuronal expression of macrophage-colony stimulating factor: a proinflammatory pathway in Alzheimer’s disease. Proc Natl Acad Sci U S A. 1997;94:5296-301.
Berg J Vom, Prokop S, Miller KR, et al. Inhibition of IL-12/IL-23 signaling reduces Alzheimer’s disease-like pathology and cognitive decline. Nat Med. 2012;18:1812-9.
Fillit H, Ding WH, Buee L, et al. Elevated circulating tumor necrosis factor levels in Alzheimer’s disease. Neurosci Lett. 1991; 129:318-20.
Patel NS, Paris D, Mathura V, et al. Inflammatory cytokine levels correlate with amyloid load in transgenic mouse models of Alzheimer’s disease. J Neuroinflammation. 2005;2:9.
Forloni G, Demicheli F, Giorgi S, et al. Expression of amyloid precursor protein mRNAs in endothelial, neuronal and glial cells: modulation by interleukin-1. Brain Res Mol Brain Res. 1992; 16:128-34.
Vasilakos JP, Carroll RT, Emmerling MR, et al. Interleukin-1 beta dissociates beta-amyloid precursor protein and beta-amyloid peptide secretion. FEBS Lett. 1994;354:289-92.
Duong T, Nikolaeva M, Acton PJ. C-reactive protein-like immunoreactivity in the neurofibrillary tangles of Alzheimer’s disease. Brain Res. 1997;749:152-6.
Iwamoto N, Nishiyama E, Ohwada J, et al. Demonstration of CRP immunoreactivity in brains of Alzheimer’s disease: immunohistochemical study using formic acid pretreatment of tissue sections. Neurosci Lett. 1994;177:23-6.
Cunningham C. Microglia and neurodegeneration: the role of systemic inflammation. Glia. 2013;61:71-90.
Hickman SE, Allison EK, El Khoury J. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci. 2008;28:8354-60.
Lucin KM, O’Brien CE, Bieri G, et al. Microglial beclin 1 regulates retromer trafficking and phagocytosis and is impaired in Alzheimer’s disease. Neuron. 2013;79:873-86.
Griciuc A, Serrano-Pozo A, Parrado AR, et al. Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron. 2013;78:631-43.
Mawuenyega KG, Sigurdson W, Ovod V, et al. Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science. 2010;330:1774.
Parkhurst CN, Yang G, Ninan I, et al. Microglia promote learningdependent synapse formation through brain-derived neurotrophic factor. Cell. 2013;155:1596-609.
Armstrong RA. The molecular biology of senile plaques and neurofibrillary tangles in Alzheimer’s disease. Folia Neuropathol. 2009;47:289-99.
Lukiw WJ, Bazan NG. Neuroinflammatory signaling upregulation in Alzheimer’s disease. Neurochem Res. 2000;25:1173-84.
Rodríguez JJ, Olabarria M, Chvatal A, et al. Astroglia in dementia and Alzheimer’s disease. Cell Death Differ. 2009; 16:378-85.
Heneka MT, O’Banion MK, Terwel D, et al. Neuroinflammatory processes in Alzheimer’s disease. J Neural Transm. 2010;117: 919-47.
Heneka MT, Sastre M, Dumitrescu-Ozimek L, et al. Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice. J Neuroinflammation. 2005;2:22.
Rossner S, Lange-Dohna C, Zeitschel U, et al. Alzheimer’s disease beta-secretase BACE1 is not a neuron-specific enzyme. J Neurochem. 2005;92:226-34.
Jellinger KA. The enigma of vascular cognitive disorder and vascular dementia. Acta Neuropathol (Berl). 2007;113:349-88.
Plassman BL, Langa KM, Fisher GG, et al. Prevalence of dementia in the United States: the aging, demographics, and memory study. Neuroepidemiology. 2007;29:125-32.
Moorhouse P, Rockwood K. Vascular cognitive impairment: current concepts and clinical developments. Lancet Neurol. 2008; 7:246-55.
Jellinger KA. Pathology and pathogenesis of vascular cognitive impairment-a critical update. Front Aging Neurosci. 2013;5:17.
Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci. 2003;4:399-415.
Hu X, Li P, Guo Y, et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke. 2012;43:3063-70.
Iadecola C. The pathobiology of vascular dementia. Neuron. 2013;80:844-66.
Venkat P, Chopp M, Chen J. Models and mechanisms of vascular dementia. Exp Neurol. 2015;272:97-108.
Jellinger KA. The enigma of mixed dementia. Alzheimers Dement. 2007;3:40-53.
Gold G, Giannakopoulos P, Herrmann FR, et al. Identification of Alzheimer and vascular lesion thresholds for mixed dementia. Brain. 2007;130:2830-6.
Sachdev PS, Chen X, Joscelyne A, et al. Hippocampal size and dementia in stroke patients: the Sydney stroke study. J Neurol Sci. 2007;260:71-7.
Del Ser T, Hachinski V, Merskey H, et al. An autopsy-verified study of the effect of education on degenerative dementia. Brain. 1999;122:2309-19.
Zekry D, Duyckaerts C, Moulias R, et al. Degenerative and vascular lesions of the brain have synergistic effects in dementia of the elderly. Acta Neuropathol (Berl). 2002;103:481-7.
Burkhardt CR, Filley CM, Kleinschmidt-DeMasters BK, et al. Diffuse Lewy body disease and progressive dementia. Neurology. 1988;38:1520-8.
Graeber MB, Müller U. Dementia with Lewy bodies: disease concept and genetics. Neurogenetics. 2003;4:157-62.
Shepherd CE, Thiel E, McCann H, et al. Cortical inflammation in Alzheimer’s disease but not dementia with Lewy bodies. Arch Neurol. 2000;57:817-22.
Mackenzie IR. Activated microglia in dementia with Lewy bodies. Neurology. 2000;55:132-4.
Katsuse O, Iseki E, Kosaka K. Immunohistochemical study of the expression of cytokines and nitric oxide synthases in brains of patients with dementia with Lewy bodies. Neuropathol. 2003;23:9-15.
Iseki E, Marui W, Akiyama H, et al. Degeneration process of Lewy bodies in the brains of patients with dementia with Lewy bodies using alpha-synuclein-immunohistochemistry. Neurosci Lett. 2000;286:69-73.
McKhann GM, Albert MS, Grossman M, et al. Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick’s Disease. Arch Neurol. 2001;58:1803-9.
Gorno-Tempini ML, Hillis AE, Weintraub S, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011; 76:1006-14.
Rascovsky K, Hodges JR, Knopman D, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134:2456-77.
Armstrong MJ, Litvan I, Lang AE, et al. Criteria for the diagnosis of corticobasal degeneration. Neurology. 2013;80:496-503.
Hutton M, Lendon CL, Rizzu P, et al. Association of missense and 5’-splice-site mutations in tau with the inherited dementia FTDP-17. Nature. 1998;393:702-5.
Cruts M, Theuns J, Van Broeckhoven C. Locus-specific mutation databases for neurodegenerative brain diseases. Hum Mutat. 2012;33:1340-4.
Petkau TL, Neal SJ, Orban PC, et al. Progranulin expression in the developing and adult murine brain. J Comp Neurol. 2010; 518:3931-47.
Bateman A, Bennett HP. The granulin gene family: from cancer to dementia. BioEssays. 2009;31:1245-54.
Pickford F, Marcus J, Camargo LM, et al. Progranulin is a chemoattractant for microglia and stimulates their endocytic activity. Am J Pathol. 2011;178:284-95.
Martens LH, Zhang J, Barmada SJ, et al. Progranulin deficiency promotes neuroinflammation and neuron loss following toxininduced injury. J Clin Invest. 2012;122:3955-9.
Yin F, Banerjee R, Thomas B, et al. Exaggerated inflammation, impaired host defense, and neuropathology in progranulin-deficient mice. J Exp Med. 2010;207:117-28.
Jaturapatporn D, Isaac MGEKN, McCleery J, et al. Aspirin, steroidal and non-steroidal anti-inflammatory drugs for the treatment of Alzheimer’s disease. Cochrane Database Syst Rev. 2012;2:CD006378.
Miguel-Álvarez M, Santos-Lozano A, Sanchis-Gomar F, et al. Non-steroidal anti-inflammatory drugs as a treatment for Alzheimer’s disease: a systematic review and meta-analysis of treatment effect. Drugs Aging. 2015;32:139-47.