2016, Number 2
<< Back Next >>
Rev Cubana Invest Bioméd 2016; 35 (2)
Mathematical diagnosis of cardiac dynamics and evaluation of hemodynamic variables in the intensive care unit
Rodríguez VJO, Prieto BSE, Correa HSC, Oliveros RH, Soracipa MMY
Language: Spanish
References: 42
Page: 158-173
PDF size: 357.48 Kb.
ABSTRACT
Introduction: Based on dynamic systems, a diagnosis was developed of cardiac
dynamics with clinical application in 16 h for patients in intensive care units.
Objectives: Confirm the diagnostic capacity of the new cardiac dynamics evaluation
methodology in 16 h and determine the evolution of oxygen and carbon dioxide arterial
and venous pressure.
Methods: A study was conducted of 50 dynamics, 10 of them normal and 40 with
acute pathologies. Measurements were taken of minimum and maximum heart rate
and number of beats every hour. Attractors were developed and an evaluation was
performed of occupation spaces and fractal dimension in 16 and 21 h. A comparison
was made of the two physical-mathematical diagnoses. Confirmation was then carried
out of the diagnosis established in 16 h by means of a blind comparison with the
conventional diagnosis. Oxygen and carbon dioxide arterial and venous pressure values
were taken from 7 intensive care unit patients to develop chaotic attractors and
evaluate the minimum and maximum values for the attractor on the retardation map.
Results: Confirmation was made of the diagnostic capacity of the 16-h methodology
for cardiac dynamics, with 100% sensitivity and specificity and a kappa coefficient of
one with respect to conventional diagnosis. Minimum and maximum values for
attractors of oxygen and carbon dioxide arterial and venous pressure ranged between
29.60 and 194.40, 24.20 and 56.10, 16.40 and 65.60, and 21.40 and 97.90.
Conclusions: Diagnostic predictions were confirmed in 16 h and a differentiation was
made between normality, chronic disease and acute disease, useful for the clinical
follow-up of intensive care unit patients. Variables displayed chaotic behavior. These
results could serve as foundation for clinical applications and mortality predictions.
REFERENCES
Devaney R. A first course in chaotic dynamical systems theory and experiments. Reading Mass: Addison- Wesley; 1992.
Mandelbrot B. Introducción. En: Los Objetos Fractales. Barcelona: Tusquets Eds. S.A; 2000. p. 13-26.
Peitgen H, Jurgens H, Saupe D. Strange attractors, the locus of chaos. In: Chaos and Fractals: New Frontiers of Science. New York: Springer-Verlag; 1992. p. 655- 768.
Jimenez L, Montero FJ. Medicina de urgencias y emergencias: guía diagnóstica y protocolos de actuación. 3ª Ed, Madrid: Elsevier; 2006.
Gómez D, Fernández G, Gutiérrez Á, Daza L, Fernández C, Manrique N, et al. Cálculo de los contenidos arterial y venoso de oxígeno, de la diferencia arteriovenosa de oxígeno, tasa de extracción tisular de oxígeno y shunt intrapulmonar con unas nuevas fórmulas, basadas en la saturación de oxígeno. Revista facultad de medicina. 2000;48(2):67-76.
Perkins G, McAuley D, Giles S, Routledge H, Gao F. Do changes in pulse oximeter oxygen saturation predict equivalent changes in arterial oxygen saturation? Crit Care. 2003;7(4): R67–R71.
Figueredo OL, González S. Morbimortalidad en la Unidad de Cuidados Intensivos. Rev Electrónica Portales Médicos. 2010;1–22.
Feynman RP, Leighton RB, Sands M. Leyes de la Termodinámica. Primera edición Wilmington: Addison-Wesley Iberoamericana, SA. 1998;1:1-44.
Feynman R. Comportamiento cuántico. Wilmington: Addison-Wesley Iberoamericana, SA. 1964;1:1-37.
Rañada A. Introducción. En Orden y Caos. Scientific American. Barcelona: Prensa Cientifica SA; 1990. p. 4-8.
Rodríguez J, Correa C, Melo M, Domínguez, D, Prieto S, Cardona DM, et al. Chaotic cardiac law: Developing predictions of clinical application. J Med Med Sci. 2013;4(2):79-84.
Rodríguez J, Prieto S, Mendoza F, Velásquez N. Physical mathematical evaluation of the cardiac dynamic applying the Zipf - Mandelbrot law. Journal of Modern Physics. 2015;6:1881-8.
Rodríguez J, Prieto S, Domínguez D, Melo M, Mendoza F, Correa C, et al. Mathematical-physical prediction of cardiac dynamics using the proportional entropy of dynamic systems. J Med Med Sci. 2013;4(8):370-81.
Rodríguez J, Prieto S, Correa C, Soracipa Y, Aguirre G, Méndez L, et al. Proportional entropy applied to the clinical diagnostic of cardiac dynamic: blind study with 600 holter. The 61st Annual Conference of the Israel Heart Society in association with The Israel Society of Cardiothoracic Surgery. Tel Aviv; 2014.
Rodríguez J. Proportional Entropy of the cardiac dynamics in CCU patients. 7th International Meeting on Intensive Cardiac Care. Israel Heart Society, European Society of Cardiology, EBAC. Tel Aviv; 2011.
Rodríguez J, Prieto S, Avilán N, Correa C, Bernal P, Ortiz L, et al. Nueva metodología física y matemática de evaluación del Holter. Rev Colomb Cardiol. 2008;15:50-4.
Rodríguez J, Prieto S, Bernal P, Soracipa Y, Salazar G, Isaza D, et al. Nueva metodología de ayuda diagnóstica de la dinámica geométrica cardiaca. Dinámica cardiaca caótica del holter. Rev Acad Colomb Cienc. 2011;35(134):5-12.
Rodríguez J. Mathematics physical assessment of cardiac dynamics based on theory of probability and proportions of entropy in the intensive care unit for patients with arrhythmia. International Conference on Medical Physics. Birmingham; 2015.
Rodríguez J, Prieto S, Correa C, Oliveros H, Soracipa Y, Méndez L et al. Diagnóstico físico-matemático de la dinámica cardiaca a partir de sistemas dinámicos y geometría fractal: disminución del tiempo de evaluación de la dinámica cardiaca de 21 a 16 horas. Acta Colomb Cuid Intensivo. 2016;16(1):15-22.
Perkiomaki J, Mäkikallio T, Huikuri H. Fractal and complexity measures of heart rate variability. En: Clinical and Experimental Hypertension. 2005;27(2-3):149-58.
Gallo J, Farbiarz J, Alvarez D. Análisis espectral de la variabilidad de la frecuencia cardiaca. Iatreia. 1999;12(2):61-71.
Guillen P, Vallverdú M, Rojas R, Jugo D, Carrasco H, Caminal P, et al. Dinámica no lineal para caracterizar la dinámica la variabilidad del ritmo cardíaco en pacientes chagásticos. Memorias II Congreso Lationoamericano de Ingeniería Biomédica. Habana: Cuba. 2001 [citado 17 de diciembre de 2015]. Disponible en: http://www.saber.ula.ve/bitsteam/123456789/15820/1/dinamica_nolineal.pdf
Goldberger AL, Amaral L, Hausdorff JM, Ivanov PC, Peng CK, Stanley HE, et al. Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci U SA. 2002;99(1):2466–72.
Huikuri HV, Mäkikallio TH, Peng Ch, Goldberger AL, Hintze U, Moller M, et al. Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infartion. Circulation. 2000;101:47-53.
Voss A, Schulz S, Schroeder R, Baumert M, Caminal P. Methods derived from nonlinear dynamics for analysing heart rate variability. Philosophical Transactions of Royal Society A. 2009;367(1887):277-96.
Mäkikallio TH, Huikuri HV. Fractal and complexity measures of heart rate variability. Clin Exp Hypertens. 2005;2-3:149-58.
Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985t;13(10):818–29.
Hosseini M, Ramazani J. Comparison of acute physiology and chronic health evaluation II and Glasgow Coma Score in predicting the outcomes of Post Anesthesia Care Unit's patients. Saudi J Anaesth. 2015;9(2):136–41.
Naved SA, Siddiqui S, Khan FH. APACHE-II score correlation with mortality and length of stay in an intensive care unit. Journal of the College of Physicians and Surgeons Pakistan. 2011;21(1):4-8.
Reich DL. Monitoring in Anesthesia and Perioperative Care. Cambridge: University Press; 2011.
Hsieh Y, Su M, Wang C, Wang P. Prediction of survival of ICU patients using computational intelligence. Comput Biol Med. 2014;47:13-9.
Cismondi F, Celi LA, Fialho AS, Vieira SM, Reti SR, Sousa JM, et al. Reducing unnecessary lab testing in the ICU with artificial intelligence. International Journal of Medical Informatics. 2015;8:345-58
Kajimoto K, Sato N, Takano T. Association of age and baseline systolic blood pressure with outcomes in patients hospitalized for acute heart failure syndromes. 2015;191:100-6.
Esteve F. Evaluation of the PaO2/FiO2 ratio after cardiac surgery as a predictor of outcome during hospital stay. BMC Anesthesiology. 2014;14:83.
Rodríguez J, Prieto S, Flórez M, Alarcón C, López R, Aguirre G, et al. Physicalmathematical diagnosis of cardiac dynamic on neonatal sepsis: predictions of clinical application. J Med Med Sci. 2014;5(5):102-8.
Rodríguez J. Nuevo diagnóstico físico y matemático de la monitoria fetal: predicción de aplicación clínica. Momento Revista de Física. 2012;44:49-65.
Rodríguez J. Método para la predicción de la dinámica temporal de la malaria en los municipios de Colombia. Rev Panam Salud Pública. 2010;27(3):211-8.
Rodríguez J, Prieto S, Correa C, Pérez C, Mora J, Bravo J, et al. Predictions of CD4 lymphocytes'’ count in HIV patients from complete blood count. BMC Medical Physics. 2013;13:3.
Prieto S, Rodríguez J, Correa C, Soracipa Y. Diagnosis of cervical cells based on fractal and Euclidian geometrical measurements: Intrinsic Geometric Cellular Organization. BMC Medical Physics. 2014;14(2):1-9.
Velásquez J, Prieto S, Correa C, Domínguez D, Cardona D, Melo M, et al. Geometrical nuclear diagnosis and total paths of cervical cell evolution from normality to cancer. J Cancer Res Ther. 2015;11(1):98–104.
Correa C, Rodríguez J, Prieto S, Álvarez L, Ospino B, Munévar A, et al. Geometric diagnosis of erythrocyte morphophysiology. J Med Med Sci. 2012;3(11):715-20.
Rodríguez J, Prieto S, Correa C, Bernal P, Puerta G, Vitery S, et al. Theoretical generalization of normal and sick coronary arteries with fractal dimensions and the arterial intrinsic mathematical harmony. BMC Med Phys. 2010;10:1-6.