2015, Number 3
<< Back Next >>
Rev Cubana Farm 2015; 49 (3)
Evaluation of the association antibiotics against Pseudomonas aeruginosa
Melo CHD, Vieira BDI, Sobral SCE, Morais de Andrade BMG, Moreira MCP, Ferreira CF, Sabino AR
Language: Portugués
References: 25
Page: 473-782
PDF size: 200.41 Kb.
ABSTRACT
Introduction: Pseudomonas aeruginosa is an anaerobic and gramnegative rod,
they can be isolated from water, soil, vegetables, waste and animals.
This microorganism is a nosocomial opportunistic infectious agent, mainly for
immunocompromised patients. One of the main traits of
P. aeruginosa is its intrinsic
drug resistance to structurally different antibiotics.
Objective: to evaluate the microbiological effect and to compare the activities
derived from the antibiotic association s acting on the same target and on different
targets against
P. aeruginosa strains.
Methods: the Minimun Inhibitory Concentration (MIC) was determined by broth
microdilution method. The modulation of the activity on the bacteria was based on
the antibiotic association.
Results: the association of clarithromycin-imipenem and of clarothromycinciprofloxacin
demonstrate synergism against
P. aeruginosa. However, the
association of clarithromycin?gentamycin did not show differences. On the other
hand, the association of imipenem-clarihtromycin, of ciprofloxacine-clarithromycin
and of gentamycin-clarithromycin showed antagonistic effect.
Conclusions: the results of this study indicated that the association of two
antibiotics enhances the antimicrobial potential of these drugs, and that they can be
used in combination whenever other research studies confirm the safety of such
use.
REFERENCES
Martins MA. Manual de infecção hospitalar – epidemiologia, prevenção e controle. 2ª ed. Minas Gerais: MEDSI, 2001.
Freitas ALP, Barth AL. Antibiotic resistance and molecular typing of Pseudomonas aeruginosa: focus on imipenem. Br J Inf Dis. 2002;6(1):1-7.
Kiska DL, Gillian PH. Pseudomonas. Manual of Clinical Microbiology. In: Murray PR, Baron EJ, Pfaller MA, Jorgensen JH, Yolken RH (eds). 8ª ed. Manual of Clinical microbiology. Washington DC: American Society for Clinical Microbiology; 2003.
Torres JCN, Menezes EA, Ângelo MRF, Oliveira IRN, Salviano MNC, Xavier DE, et al. Cepas de Pseudomonas spp. produtoras de metalo-betalactamase isoladas no Hospital Geral de Fortaleza. J Bras Patol Med Lab. 2006;42(5):313-19.
Piscitelli SC, Danzinger LH, Rodvold KA. Clarithromycin and azithromycin: new macrolide antibiotics. Clin Pharm., Bethesda 1992;11:137-52.
Petre Jr WA. Antimicrobianos: penicilinas, cefalosporinas e outros antibióticos beta-lactâmicos. In: Goodman A. As bases farmacológicas da terapêutica. 10ª ed. Rio de Janeiro: McGraw-Hill; 2003. p. 891-912.
Tavares W. Manual de antibióticos e quimioterápicos antiinfecciosos. 2ª ed. São Paulo: Atheneu; 1996. p. 792.
Chambers HF. Aminoglicosídeos e espectinomicina. En: Katzung BG. Farmacologia Básica e Clínica. 10ª ed.Sau Paulo: McGraw-Hill Interamericana do Brasil Ltda; 2010.
Woodford N, Ellington MJ. The emergence of antibiotic resistance by mutation. Clinical Microbiology Infection. 2007;13:5–18.
Rodriguez-Martinez JM. Mechanisms of plasmid-mediated resistance to quinolones. Enferm Infecc Microbiol Clin. 2005;23(1):25–31.
Javadpour MM, Juban MM, Lo WC, Bishop SM, Alberty JB, Cowell SM, et al. De novo antimicrobial peptides with low mammalian cell toxicity. Journal of medicinal chemistry. 1996;39:3107–13.
Coutinho HDM, Costa JGM, Lima EO, Falcão-Silva VS, Siqueira-Jr. Enhancement of the antibiotic activity against a multiresistant Escherichia coli by Mentha arvensis L. and chlorpromazine. Chemotherapy. 2008;54:328–30.
Goodman & Gilman. As bases farmacológicas da terapêutica. 10ª ed. Sal Paulo: McGraw-Hill Interamericana do Brasil Ltda.; 2005. p. 757-69.
Gomes M. Papel dos macrolídeos como agentes imunomoduladores. Pneumologia Paulista. 2008;21(4):57-59.
Diniz MFFM, Pereira GAS, Barreto RC, Vasconcelos LCS, Veloso DJ, Cunha PASMA, et al. Principais drogas com as possíveis interações medicamentosas prescritas na clínica odontológica. Revista Brasileira de Ciências da Saúde. 2009;13(1):66-70.
Nordmann P. Mechanism of resistance to belactam antibiotics in P. aeruginosa. Annales Françaises d’Anesthésie et de Réanimation. 2003;22:527–30.
Lopez-Boado YS, Rubin BK. Macrolides as immunomodulatory medications for the therapy of chronic lung diseases. Curr Opin Pharmacol. 2008;8(3):286-91.
Schoni MH. Macrolide antibiotic therapy in patients with cystic fibrosis. Swiss Med Wkly. 2003;133(21-22):297-301.
Nguyen T, Louie SG, Beringer PM, Gill MA. Potential role of macrolide antibiotics in the management of cystic fibrosis lung disease. Curr Opin Pulm Med. 2002;8(6):521-28.
Fujimura S, Sato T, Kikuchi T, Gomi K, Watanabe A, Mchami T. Combined efficacy of clarithromycin plus cefazolin or vancomycin against Staphyloccoccus aureus biofilms formed on titanium medical devices. Int J Antimicrob Agents. 2008;32(6):481-84.
Normark BH, Normark S. Evolution and spread of antibiotic resistance. Journal of Internal Medicine. 2002;252:91–106.
Kugelberg E, Lofmark S, Wretlind B, Andersson DI. Reduction of the fitness burden of quinolone resistance in Pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy. 2005;55:22–30.
Hancock REW. Resistance mechanisms in Pseudomonas aeruginosa and other nonfermentative gram-negative bacteria. Clinical Infectious Diseases. 1998;27(1):93–99.
Köller W, Wilcox WF, Barnard J, Jones AL, Brown PG. Detection and quantification of resistance of Venturia inaequalis populations to sterol demethylation inhibitors. Phytopathology 1997;87:184-190.
Yassien M, Khardori N, Ahmedy A, Toama M. Modulation of Biofilms of Pseudomonas aeruginosa by Quinolones. Antimicrobial Agents And Chemotherapy 1995;39(10):2262–68.