2016, Number 1
<< Back Next >>
Rev Cub Oftal 2016; 29 (1)
Apoptosis and necroptosis in ocular deseases
Beltrán SRI, Hernández BR
Language: Spanish
References: 32
Page: 80-88
PDF size: 108.60 Kb.
ABSTRACT
Apoptosis is a relatively recent term to define a process of programmed cellular death
related to different pathological processes (cancer, inflammatory and degenerative
diseases). There is currently another process of non-programmed cellular death
named necrosis, which occurs through non-modulated mechanisms and a variety is
called necroptosis. Both processes (apoptosis and necroptosis) can be found in the physiopathology of some ophthalmological disorders, which prompted us to carry out
an updated literature review on this topic. The objective was to increase the amount
of knowledge on the topic and its relation to some of the ophthalmological disorders
in which it is involved. Basic texts of ophthalmology were reviewed and articles
published in the last five years were tracked down using Google as search engine, the
LILACS directory and the consultation of the PubMed and Hinari databases. There is
still much to be studied on these processes that take place at the cell level and that
have only been verified through lab studies and with animal models. Better
understanding of this process may pave the way for the emergence of new antiapoptosis
and anti-necroptosis therapies.
REFERENCES
Majno G, Joris I. Apoptosis, oncosis and necrosis: an overview of cell death. Am J Pathol. 1995;146:3-15.
Castagnino JM. Modelado molecular y apoptosis (editorial). Acta Bioquim Clin Latinoam. 2004;38(1):1.
Golstein P, Kroemer G. Death by necrosis: towards a molecular definition. Trends Biochem Sci Cell. 2007;32:37-43.
Degterev A, Huang Z, Boyce M. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol. 2005;1(2):112-5.
Hotchkiss RS, Strasser A, Mc Dunn JE. Cell death. N Engl J Med. 2009;361(16):1570-83.
Pérez-Machado J, Lie-Concepción A. Apoptosis, mecanismo de acción. Rev Cienc Méd La Habana [revista en Internet]. 2012 [citado 22 de enero de 2016];18(2):[aprox. 15 p.]. Disponible en: http://revcmhabana.sld.cu/index.php/rcmh/article/view/572
Lopategui Cabezas I, Herrera Batista A. Papel crucial de la mitocondria en la muerte celular. Rev Cubana Invest BioMed. 2010;29(2):39-42.
Stamper R. Mecanismos de daño del nervio óptico en glaucoma. Últimas innovaciones en los glaucomas, etiología, diagnóstico y tratamiento. Highl Ophthalmol Intern. 2002(12):107-9.
Cramer SC, Sur M, Dobkin B, O'Brien Ch, Sanger TD, Trojanowsky J, et al. Harnessing neuroplasticity for clinical applications. Brain. 2011;134(6):1591-1609.
Klocker N, Kermer P, Weishaupt JH, Labes M, Ankerhold R, Bahr M. Brain-derived neurotrophic factor-mediated neuroprotection of adult rat retinal ganglion cells in vivo does not exclusively depend on phosphatidyl-inositol-3`-kinase/protein kinase B signalling. J Neurosci. 2000;20:6962-7.
Watanabe M, Fukuda Y. Survival and axonal regeneration of retinal ganglion cells in adult cats. Progr Retin Eye Res. 2002;21:529-53.
Manabe S, Kashii S, Honda Y, Yamamoto R, Katsuki H, Akaike A. Quantification of axotomized ganglion cell death by explant culture of the rat retina. Neurosci Lett. 2002;334:33-6.
Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Hengartner M. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death & Differentiation. 2009;16(1):3-11.
Li Y, Yang X, Ma C, Qiao J, Zhang C. Necroptosis contributes to the NMDA-induced excitotoxicity in rat's cultured cortical neurons. Neurosci Lett. 2008;447(2-3):120-3.
Vavvas D, Miller JW, Kayama M. Methods and compositions for preserving Retinal Ganglion Cells. MEDLINE; 2014:123-34.
Lafuente MP, Villegas-Pérez MP, Mayor S, Aguilera ME, Miralles de Imperial J, Vidal-Sanz M. Neuroprotective effects of brimonidine against transient ischemiainduced retinal ganglion cell death: a dose response in vivo study. Exp Eye Res. 2002;74:181-9.
Kern TS, Tang J, Mizutani M, Kowluru RA, Nagaraj RH, Romeo G, Podesta FL. Response of capillary cell death to aminoguanidine predicts the development of retinopathy: comparison of diabetes and galactosemia. Invest Ophthalmol Vis Sci. 2002;41:3972-8.
Mizutani M, Kern TS, Lorenzi M. Accelerated death of retinal microvascular cells in human and experimental diabetes retinopathy. J Clin Invest. 1996;97:2883-90.
Mohr S, Tang J, Kern TS. Caspase activation in retinas of diabetic and galactosemic mice and diabetic patients. Diabetes. 2002;51:1172-9.
Devi TS, Lee I, Huttemann M, Kumar A, Nantwi KD. TXNIP links innate host defense mechanisms to oxidative stress and inflammation in retinal Muller glia under chronic hyperglycemia: implications for diabetic retinopathy. Exp Diab Res. 2012:438-40.
Devi TS, Hosoya K, Terasaki T, Singh LP. Critical role of TXNIP in oxidative stress, DNA damage and retinal pericyte apoptosis under high glucose: implications for diabetic retinopathy. Exp Cell Res. 2013;319:1001-12.
Barot M, Gokulgandhi MR, Mitra AK. Mitochondrial dysfunction in retinal diseases. Curr Eye Res. 2011;36:1069-77.
Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 in inflammation activation. Nature. 2011;469:221-5.
Lalit PS. Thioredoxine Interacting Protein (TXNIP) and Pathogenesis of Diabetic Retinopathy. J Clin Exp Ophthalmol. 2013;5(4):10.
Hitomi J, Christofferson DE, Ng A. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell. 2008;135(7):1311-23.
Rosenbaum DM, Degterev A, David J, et al. Necroptosis, a novel form of caspaseindependent cell death, contributes to neuronal damage in a retinal ischemiareperfusion injury model. J Neurosci Res. 2010; 88(7):1569-76.
García M, Vecino E. Vías de señalización intracelular que conducen a la apoptosis de las células de la retina. Arch Soc Esp Oftalmol. 2003;78:351-64.
Arroyo JG, Yang L, Bula D. Photoreceptor apoptosis in human retinal detachment. Am J Ophthalmol. 2005;139(4):605-10.
Murakami Y, Miller JW. Rip Kinasa mediated necrosis as an alternative mechanism of photoreceptor death. Oncotarget. 2011;2:497-509.
Geller AM, Sieving PA. Assessment of foveal cone photoreceptors in Stargardt's macular dystrophy using a small dot detection task. Vis Res. 1993;33:1509-24.
Sahel JA, Léveillard T, Picaud S, Dalkara D. Functional rescue of cone photoreceptors in retinitis pigmentosa. Graefe's Archive for Clinical and Experimental Ophthalmology. 2013;13:2314-7.
Leveillard T, Mohand-Said S, Lorentz O, Hicks D, Fintz AC, Clerin E, et al. Identification and characterization of rod-derived cone viability factor. Nat Genet. 2004;36:755-9.