2015, Number 6
<< Back Next >>
Rev Invest Clin 2015; 67 (6)
Nicotine Addiction Development: From Epidemiology to Genetic Factors
Pérez-Rubio G, Sansores R, Ramírez-Venegas A, Camarena Á, Pérez-Rodríguez ME, Falfán-Valencia R
Language: English
References: 73
Page: 333-343
PDF size: 104.90 Kb.
ABSTRACT
Background: Nicotine addiction is a complex and multifactorial disease affecting the central nervous system and consists of a
set of characteristic symptoms and signs.
Objective: The objective of this study was to provide an overview on smoking and
the complexity of dependency, with special emphasis on the involvement of genetic factors, including neurexin and nicotinic
cholinergic receptor genes.
Methods: The following two aspects are discussed in the present article: (i) epidemiology in Mexico;
and (ii) a review of the published literature on genetic association studies using the National Center for Biotechnology Information
(NCBI) database of the USA as a search tool. The search key words were: nicotine, smoking, dependence, genetic, tobacco,
neurobiology and GWAS. The publication period of the reviewed articles was January 2005 to July 2015.
Results: There are
numerous studies that provide evidence of the involvement of a genetic component that contributes to the risk of developing
nicotine addiction, but the multifactorial nature of addiction requires coordinated research from multiple disciplines.
Conclusion:
Research is needed on the factors associated with genetic risk for nicotine addiction and their interaction with environmental
factors.
REFERENCES
World Health Organization. Informe OMS sobre la Epidemia Mundial de Tabaquismo, 2011. Available from: www.who.int/ tobacco/global_report/2011/es/ [Last accessed: September 5, 2013].
World Health Organization. Día Mundial sin Tabaco, 2013. Available from: www.who.int/campaigns/no-tobacco-day/2013/event/es/ index.html [Last accessed: September 4, 2013].
Centers for Disease Control and Prevention. Morbidity and Mortality Weekly Reports (MMWRs). Annual Smoking-Attributable Mortality, Years of Potential Life Lost, and Productivity Losses – United States; 1997-2001, 2005. Available from: www.cdc.gov/ mmwr/preview/mmwrhtml/mm5425a1.htm [Last accessed: September 7, 2013].
Liu BQ, Peto R, Chen ZM, et al. Emerging tobacco hazards in China: 1. Retrospective proportional mortality study of one million deaths. BMJ. 1998;317:1411-22.
Secretaría de Salud. Programa de Acción: Adicciones. Tabaquismo, 2001. Available from: www.ssa.gob.mx/unidades/conadic [Last accessed: September 6, 2013].
Secretaría de Salud. Encuesta Nacional de Adicciones 2011: Reporte de Tabaco. Available from: www.conadic.gob.mx [Last accessed September 6, 2013].
Méndez M, Urdapilleta E, Sansores R, et al. Factores que determinan que un paciente ingrese a un programa para dejar de fumar. RevInst Nal Enf Resp Mex. 2009;22:7-13.
Reynales-Shigematsu LM, Rodríguez-Bolaños R, Ortega-Ceballos P, Flores Escartín MG, Lazcano-Ponce E, Hernández-Ávila M. Encuesta de Tabaquismo en Jóvenes. México: Instituto Nacional de Salud Pública. 2011.
Lando HA, Hipple BJ, Muramoto M, et al. El tabaco es un problema que afecta a los niños en el mundo entero. Bol Organ Mund Salud. 2010;88:2.
Waters H, Sáenz de Miera B, Ross H, Reynales Shiematsu LM. The Economics of Tobacco Taxation in Mexico. Paris: International Union Tuberculosis and Lung Disease; 2010.
Reynales-Shigematsu LM, Rodríguez-Bolaños RdeL, Jiménez JA, Juárez-Márquez SA, Castro-Ríos A, Hernández-Avil aM. Health care costs attributable to tobacco consumption on a national level in the Mexican Social Security Institute. Salud Pública Mex. 2006;48(Suppl 1):S48-64.
World Health Organization. Tabaco: mortífero en todas sus formas, 2006. Available from: http://www.who.int/entity/tobacco/resources/ publications/wntd/2006/translations/Brochure_Spanish.pdf.
Martín Ruiz A, Rodríguez Gómez I, Rubio C, Revert C, Hardisson A. Efectos tóxicos del tabaco. Rev Toxicol. 2004;21:64-71.
National Institute on Drug Abuse. Las drogas, el cerebro y el comportamiento: la Ciencia de la Adicción. Departamento de Salud y Servicios Humanos de los Estados Unidos. 2008. Available from: www.drugabuse.gov/es/publicaciones/las-drogas-el-cerebro- y-el-comportamiento-la-ciencia-de-la-adiccion/las-drogasy- el-cerebro [Last accessed: August 2014].
World Health Organization. The ICD-10 Classification of Mental and Behavioural Disorders: Clinical Descriptions and Diagnostic Guidelines. Geneva: World Health Organization, 1992.
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 4th ed. (DSM-IV). Washington, DC, American: Psychiatric Association, 1994.
Dierker LC, Donny E, Tiffany S, et al. The association between cigarette smoking and DSM-IV nicotine dependence among first year college students. Drug Alcohol Depend. 2007;86:106-14.
Jiménez L, Bascarán MT, García-Portilla MP, Sáiz MA, Bousoño M, Bobes J. La nicotina como droga. Adicciones. 2004;16:143-53.
Diaz FJ, Jané M, Saltó E, et al. A brief measure of high nicotine dependence for busy clinicians and large epidemiological surveys. Aust NZ J Psychiatry. 2005;39:161-8.
Pérez-Ríos M, Santiago-Pérez MI, Alonso B, Malvar A, Hervada X, de Leon J. Fagerstrom test for nicotine dependence vs heavy smoking index in a general population survey. BMC Public Health. 2009;9:493.
Blasco J, Martínez-Raga J, Carrasco E, Didia-Attas J. Atención y craving o ganas compulsivas. Avances en su conceptualización y su implicación en la prevención de recaídas. Adicciones. 2008; 20:365-76.
Meneses-Gaya IC, Zuardi AW, Loureiro SR, Crippa JA. Psychometric properties of the Fagerström test for nicotine dependence. J Bras Pneumol. 2009;35:73-82.
Brook JS, Koppel J, Pahl K. Predictors of DSM and Fagerstromdefined nicotine dependence in African American and Puerto Rican young adults. Subst Use Misuse. 2009;44:809-22.
Ensembl Project. Available from: www.ensembl.org/Homo_sapiens/ Gene/ [Last accessed: September 2012].
Secko D. Craving nicotine: it’s in the genes. CMAJ. 2005;172:175-6.
Lukas RJ, Changeux JP, Le Novére N, et al. Current status of the nomenclature for nicotinic acetylcholine receptors and their subunits. Pharmacol Rev. 1999;51:397-401.
Wanamaker CP, Green WN. N-linked glycosylation is required for nicotinic receptor assembly but not for subunit associations with calnexin. J Biol Chem. 2005;280:33800-10.
Zhu D, Xiong WC, Mei L. Lipid rafts serve as a signaling platform for nicotinic acetylcholine receptor clustering. J Neurosci. 2006; 26:4841-51.
Lynagh T, Lynch JW. Molecular mechanisms of Cys-loop ion channel receptor modulation by ivermectin. Front Mol Neurosci. 2012;5:60.
Albuquerque EX, Pereira EF, Alkondon M, Rogers SW. Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev. 2009;89:73-120.
Bruneau E, Sutter D, Hume RI, Akaaboune M. Identification of nicotinic acetylcholine receptor recycling and its role in maintaining receptor density at the neuromuscular junction in vivo. J Neurosci. 2005;25:9949-59.
Yakel JL. Gating of nicotinic ACh receptors: latest insights into ligand binding and function. J Physiol. 2010;588:597-602.
Gay EA, Yakel JL. Gating of nicotinic ACh receptors; new insights into structural transitions triggered by agonist binding that induce channel opening. J Physiol. 2007;584:727-33.
Henchman RH, Wang HL, Sine SM, Taylor P, McCammon JA. Ligand-induced conformational change in the alpha7 nicotinic receptor ligand binding domain. Biophys J. 2005;88:2564-76.
Micó JA, Moreno MR, Roca A, Rojas MO, Ortega A. Neurobiología de la adicción a la nicotina. Prev Tab. 2000;2:101-5.
Zieher LM, Guelman LR. Bases neurobiológicas de la adicción a la nicotina. Psicofarmacología. 2005;5:30.
Granda J, Solano S, Jareño J, Pérez A, Barrueco M, Jiménez C. De la neurobiología de la adicción a la nicotina al tratamiento del tabaquismo. Progresos terapéuticos. Prev Tab. 2006;8:116-28.
Fernández-Espejo E. Bases neurobiológicas de la drogadicción. Rev Neurol. 2002;34:659-64.
Berninghausen O, Rahman MA, Silva JP, Davletov B, Hopkins C, Ushkaryov YA. Neurexin I beta and neuroligin are localized on opposite membranes in mature central synapses. J Neurochem. 2007;103:1855-63.
Missler M, Südhof TC. Neurexins: three genes and 1001 products. Trends Genet. 1998;14:20-6.
Craig AM, Kang Y. Neurexin-neuroligin signaling in synapse development. Curr Opin Neurobiol. 2007;17:43-52.
Lisé MF, El-Husseini A. The neuroligin and neurexin families: from structure to function at the synapse. Cell Mol Life Sci. 2006; 63:1833-49.
Sheckler LR, Henry L, Sugita S, Südhof TC, Rudenko G. Crystal structure of the second LNS/LG domain from neurexin 1alpha: Ca2+ binding and the effects of alternative splicing. J Biol Chem. 2006;281:22896-905.
Boardman JD, Blalock CL, Pampel FC. Trends in the genetic influences on smoking. J Health Soc Behav. 2010;51:108-23.
Silverman EK, Palmer LJ. Case-control association studies for the genetics of complex respiratory diseases. Am J Respir Cell Mol Biol. 2000;22:645-8.
Jimenez-Sanchez G, Silva-Zolezzi I, Hidalgo A, March S. Genomic medicine in Mexico: initial steps and the road ahead. Genome Res. 2008;18:1191-8.
Shields PG, Lerman C, Audrain J, et al. Dopamine D4 receptors and the risk of cigarette smoking in African-Americans and Caucasians. Cancer Epidemiol Biomarkers Prev. 1998;7:453-8.
Perkins KA, Lerman C, Grottenthaler A, et al. Dopamine and opioid gene variants are associated with increased smoking reward and reinforcement owing to negative mood. Behav Pharmacol. 2008;19:641-9.
Sieminska A, Buczkowski K, Jassem E, Niedoszytko M, Tkacz E. Influences of polymorphic variants of DRD2 and SLC6A3 genes, and their combinations on smoking in Polish population. BMC Med Genet. 2009;10:92.
Chu SL, Xiao D, Wang C, Jing H. Association between 5-hydroxytryptamine transporter gene-linked polymorphic region and smoking behavior in Chinese males. Chin Med J (Engl). 2009; 122:1365-8.
Sieminska A, Buczkowski K, Jassem E, Tkacz E. Lack of association between serotonin transporter gene polymorphism 5-HTTLPR and smoking among Polish population: a case-control study. BMC Med Genet. 2008;9:76.
Bierut LJ, Madden PA, Breslau N, et al. Novel genes identified in a high-density genome wide association study for nicotine dependence. Hum Mol Genet. 2007;16:24-35.
Liu JZ, Tozzi F, Waterworth DM, et al. Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nat Genet. 2010;42:436-40.
Tobacco and Genetics Consortium. Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat Genet. 2010;42:441-7.
Thorgeirsson TE, Gudbjartsson DF, Surakka I, et al. Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior. Nat Genet. 2010;42:448-53.
Lessov-Schlaggar CN, Pang Z, Swan GE, et al. Heritability of cigarette smoking and alcohol use in Chinese male twins: the Qingdao twin registry. Int J Epidemiol. 2006;35:1278-85.
Nelson ME, Kuryatov A, Choi CH, Zhou Y, Lindstrom J. Alternate stoichiometries of alpha 4 beta 2 nicotinic acetylcholine receptors. Mol Pharmacol. 2003;63:332-41.
Tapia L, Kuryatov A, Lindstrom J. Ca2+ permeability of the (alpha4)3(beta2)2 stoichiometry greatly exceeds that of (alpha4)2(beta2)3 human acetylcholine receptors. Mol Pharmacol. 2007;71:769-76.
Stevens VL, Bierut LJ, Talbot JT, et al. Nicotinic receptor gene variants influence susceptibility to heavy smoking. Cancer Epidemiol Biomarkers Prev. 2008;17:3517-25.
Saccone NL, Wang JC, Breslau N, et al. The CHRNA5-CHRNA3- CHRNB4 nicotinic receptor subunit gene cluster affects risk for nicotine dependence in African-Americans and in European-Americans. Cancer Res. 2009;69:6848-56.
Li MD, Yoon D, Lee JY, et al. Associations of variants in CHRNA5/ A3/B4 gene cluster with smoking behaviors in a Korean population. PLoS One. 2010;5:e12183.
Berrettini W, Yuan X, Tozzi F, et al. Alpha-5/alpha-3 nicotinic receptor subunit alleles increase risk for heavy smoking. Mol Psychiatry. 2008;13:368-73.
Saccone SF, Hinrichs AL, Saccone NL, et al. Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs. Hum Mol Genet. 2007;16:36-49.
Bierut LJ, Stitzel JA, Wang JC, et al. Variants in nicotinic receptors and risk for nicotine dependence. Am J Psychiatry. 2008; 165:1163-71.
Lips EH, Gaborieau V, McKay JD, et al. Association between a 15q25 gene variant, smoking quantity and tobacco-related cancers among 17,000 individuals. Int J Epidemiol. 2010;39: 563-77.
Hong LE, Hodgkinson CA, Yang Y, et al. A genetically modulated, intrinsic cingulate circuit supports human nicotine addiction. Proc Natl Acad Sci U S A. 2010;107:13509-14.
Janes AC, Smoller JW, David SP, et al. Association between CHRNA5 genetic variation at rs16969968 and brain reactivity to smoking images in nicotine dependent women. Drug Alcohol Depend. 2012;120:7-13.
Grucza RA, Johnson EO, Krueger RF, et al. Incorporating age at onset of smoking into genetic models for nicotine dependence: evidence for interaction with multiple genes. Addict Biol. 2010;15:346-57.
Saccone NL, Saccone SF, Hinrichs AL, et al. Multiple distinct risk loci for nicotine dependence identified by dense coverage of the complete family of nicotinic receptor subunit (CHRN) genes. Am J Med Genet B Neuropsychiatr Genet. 2009;150B:453-66.
Saccone NL, Schwantes-An TH, Wang JC, et al. Multiple cholinergic nicotinic receptor genes affect nicotine dependence risk in African and European Americans. Genes Brain Behav. 2010;9:741-50.
Nussbaum J, Xu Q, Payne TJ, et al. Significant association of the neurexin-1 gene (NRXN1) with nicotine dependence in European- and African-American smokers. Hum Mol Genet. 2008;17:1569-77.
Kelai S, Maussion G, Noble F, et al. Nrxn3 upregulation in the globus pallidus of mice developing cocaine addiction. Neuroreport. 2008;19:751-5.
Cheng SB, Amici SA, Ren XQ, et al. Presynaptic targeting of alpha4beta 2 nicotinic acetylcholine receptors is regulated by neurexin-1beta. J Biol Chem. 2009;284:23251-9.