2015, Number 3
<< Back Next >>
Rev Mex Neuroci 2015; 16 (3)
Optogenetics: the light as a tool for the study of brain function in the mechanisms of the sleep-wake and eating behavior
Salin-Pascual RJ
Language: Spanish
References: 58
Page: 39-51
PDF size: 151.73 Kb.
ABSTRACT
Optogenetics is a technology that uses the effect
of light on photosensitive ion channels. These can
be opened, as in the case of rhodopsin channel-2
(ChR2), with a net effect of depolarization, or as
the channel of halo rhodopsin, NpHR, in which light
produces an inhibition of ionic currents. Currently
there are more molecular tools of this type, which
are used for in vitro, ex vivo and animal studies,
which express this type of cell membrane proteins,
by genetic manipulation (knock-in). Articles that
used this type of optogenetic technology was
reviewed, especially those of the role of two
neuropeptides that regulate from the lateral
hypothalamus different sleep stages and eating
behavior. Orexins, also called hypocretins, are two
neuropeptides, which selectively suppress sleep
and sleep with rapid eye movement (REM sleep).
Mutation in one of their receptors, orexin subtype
two, has detected as the agent in Doberman dogs
narcolepsy. While narcolepsy in humans, it has
been proposed as autoimmune disease. The other
neuropeptide studied was melanin-concentrating
hormone (MCH), which is also located in the
lateral hypothalamus. Their function in sleep is
to increased REM sleep, and promoting feeding
behavior by calorie deficiencies. While orexin have
a role on the consumption of palatable foods, even
when calorie needs are already met. The knowledge
of optogenetics confirmed by the interaction of
these two neuropeptides in the regulation of sleep
and eating behavior, can help to understand health
problems such as childhood morbid obesity, where
sleep deficiency correlates inversely with the
increase the body mass index.
REFERENCES
Fiala A, Suska A, Schluter OM. Optogenetic approaches in neuroscience. Curr Biol. 2010;20(20):R897-903.
Miesenbock G. The optogenetic catechism. Science. 2009;326(5951):395-399.
Arrigoni E, Saper CB. What optogenetic stimulation is telling us (and failing to tell us) about fast neurotransmitters and neuromodulators in brain circuits for wake-sleep regulation. Curr Opin Neurobiol. 2014;29:165-171.
Huang F, Tang B, Jiang H. Optogenetic investigation of neuropsychiatric diseases. Int J Neurosci. 2013;123(1):7-16.
Muller K, Weber W. Optogenetic tools for mammalian systems. Mol Biosyst. 2013;9(4):596-608.
Lalumiere RT. Optogenetic dissection of amygdala functioning. Front Behav Neurosci. 2014;8:107.
Yoon HH, Park JH, Kim YH, Min J, Hwang E, Lee CJ, Suh JK, Hwang O, Jeon SR. Optogenetic inactivation of the subthalamic nucleus improves forelimb akinesia in a rat model of Parkinson disease. Neurosurgery. 2014;74(5):533-540; discussion 540-531.
Salin-Pascual RJ. Aspectos históricos del dormir y el soñar. Vol 1. 1a ed. Mexico: Planeación y Desarrollo Editorial, S.A de C.R.L.; 2014.
Astori S, Wimmer RD, Luthi A. Manipulating sleep spindles--expanding views on sleep, memory, and disease. Trends Neurosci. 2013;36(12):738-748.
Inutsuka A, Yamanaka A. The physiological role of orexin/hypocretin neurons in the regulation of sleep/wakefulness and neuroendocrine functions. Front Endocrinol (Lausanne). 2013;4:18.
Maejima T, Masseck OA, Mark MD, Herlitze S. Modulation of firing and synaptic transmission of serotonergic neurons by intrinsic G protein-coupled receptors and ion channels. Front Integr Neurosci. 2013;7:40.
de Lecea L. Optogenetic Control of Hypocretin (Orexin) Neurons and Arousal Circuits. Curr Top Behav Neurosci. 2014.
Gao XB. Electrophysiological effects of MCH on neurons in the hypothalamus. Peptides. 2009;30(11):2025-2030.
Mura E, Pistoia F, Sara M, Sacco S, Carolei A, Govoni S. Pharmacological modulation of the state of awareness in patients with disorders of consciousness: an overview. Curr Pharm Des. 2014;20(26):4121-4139.
Salin-Pascual RJ. Neurobiologia del Dormir y el SOñar. In: L. R-C, ed. Neurología en la Medicina del Dormir. Vol 1. 1a ed. Mexico: Academia Mexicana de Neurologia; 2014:15.
Adamantidis A, Carter MC, de Lecea L. Optogenetic deconstruction of sleep-wake circuitry in the brain. Front Mol Neurosci. 2010;2:31.
Carter ME, de Lecea L. Optogenetic investigation of neural circuits in vivo. Trends Mol Med. 2011;17(4):197-206.
Carter ME, de Lecea L, Adamantidis A. Functional wiring of hypocretin and LC-NE neurons: implications for arousal. Front Behav Neurosci. 2013;7:43.
Konadhode RR, Pelluru D, Shiromani PJ. Neurons containing orexin or melanin concentrating hormone reciprocally regulate wake and sleep. Front Syst Neurosci. 2014;8:244.
Wu M, Dumalska I, Morozova E, van den Pol A, Alreja M. Melanin-concentrating hormone directly inhibits GnRH neurons and blocks kisspeptin activation, linking energy balance to reproduction. Proc Natl Acad Sci U S A. 2009;106(40):17217-17222.
Tsunematsu T, Ueno T, Tabuchi S, Inutsuka A, Tanaka KF, Hasuwa H, Kilduff TS, Terao A, Yamanaka A. Optogenetic manipulation of activity and temporally controlled cell-specific ablation reveal a role for MCH neurons in sleep/wake regulation. J Neurosci. 2014;34(20):6896-6909.
Antal-Zimanyi I, Khawaja X. The role of melanin-concentrating hormone in energy homeostasis and mood disorders. J Mol Neurosci. 2009;39(1-2):86-98.
Arora S, Anubhuti. Role of neuropeptides in appetite regulation and obesity--a review. Neuropeptides. 2006;40(6):375-401.
Matsui K. [Mind control with optogenetic mice: exploring the causal relationships between brain activity and the mind]. Brain Nerve. 2013;65(6):609-621.
Luppi PH, Peyron C, Fort P. Role of MCH neurons in paradoxical (REM) sleep control. Sleep. 2013;36(12):1775-1776.
Jego S, Glasgow SD, Herrera CG, Ekstrand M, Reed SJ, Boyce R, Friedman J, Burdakov D, Adamantidis AR. Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat Neurosci. 2013;16(11):1637-1643.
Luquet S, Perez FA, Hnasko TS, Palmiter RD. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science. 2005;310(5748):683-685.
Rao Y, Lu M, Ge F, Marsh DJ, Qian S, Wang AH, Picciotto MR, Gao XB. Regulation of synaptic efficacy in hypocretin/orexin-containing neurons by melanin concentrating hormone in the lateral hypothalamus. J Neurosci. 2008;28(37):9101-9110.
Meister B. Neurotransmitters in key neurons of the hypothalamus that regulate feeding behavior and body weight. Physiol Behav. 2007;92(1-2):263-271.
Luppi PH, Clement O, Fort P. Paradoxical (REM) sleep genesis by the brainstem is under hypothalamic control. Curr Opin Neurobiol. 2013;23(5):786-792.
Saper CB, Cano G, Scammell TE. Homeostatic, circadian, and emotional regulation of sleep. J Comp Neurol. 2005;493(1):92-98.
Fuller PM, Saper CB, Lu J. The pontine REM switch: past and present. J Physiol. 2007;584(Pt 3):735- 741.
Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW. Control of sleep and wakefulness. Physiol Rev. 2012;92(3):1087-1187.
Siegel JM. The neurobiology of sleep. Semin Neurol. 2009;29(4):277-296.
Van Dort CJ, Zachs DP, Kenny JD, Zheng S, Goldblum RR, Gelwan NA, Ramos DM, Nolan MA, Wang K, Weng FJ, Lin Y, Wilson MA, Brown EN. Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep. Proc Natl Acad Sci U S A. 2015;112(2):584-589.
de Lecea L, Huerta R. Hypocretin (orexin) regulation of sleep-to-wake transitions. Front Pharmacol. 2014;5:16.
Bittencourt JC. Anatomical organization of the melanin-concentrating hormone peptide family in the mammalian brain. Gen Comp Endocrinol. 2011;172(2):185-197.
Sapin E, Lapray D, Berod A, Goutagny R, Leger L, Ravassard P, Clement O, Hanriot L, Fort P, Luppi PH. Localization of the brainstem GABAergic neurons controlling paradoxical (REM) sleep. PLoS One. 2009;4(1):e4272.
Williams RH, Chee MJ, Kroeger D, Ferrari LL, Maratos-Flier E, Scammell TE, Arrigoni E. Optogenetic-mediated release of histamine reveals distal and autoregulatory mechanisms for controlling arousal. J Neurosci. 2014;34(17):6023-6029.
Geerling JC. Waking under pressure. Sleep Med. 2013;14(11):1045-1046.
Cowley MA, Smart JL, Rubinstein M, Cerdan MG, Diano S, Horvath TL, Cone RD, Low MJ. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature. 2001;411(6836):480-484.
Aponte Y, Atasoy D, Sternson SM. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat Neurosci. 2011;14(3):351-355.
Betley JN, Cao ZF, Ritola KD, Sternson SM. Parallel, redundant circuit organization for homeostatic control of feeding behavior. Cell. 2013;155(6):1337-1350.
Atasoy D, Betley JN, Su HH, Sternson SM. Deconstruction of a neural circuit for hunger. Nature. 2012;488(7410):172-177.
Krashes MJ, Shah BP, Madara JC, Olson DP, Strochlic DE, Garfield AS, Vong L, Pei H, Watabe-Uchida M, Uchida N, Liberles SD, Lowell BB. An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger. Nature. 2014;507(7491):238-242.
Sharf R, Sarhan M, Brayton CE, Guarnieri DJ, Taylor JR, DiLeone RJ. Orexin signaling via the orexin 1 receptor mediates operant responding for food reinforcement. Biol Psychiatry. 2010;67(8):753- 760.
Jennings JH, Sparta DR, Stamatakis AM, Ung RL, Pleil KE, Kash TL, Stuber GD. Distinct extended amygdala circuits for divergent motivational states. Nature. 2013;496(7444):224-228.
Piccoli L, Micioni Di Bonaventura MV, Cifani C, Costantini VJ, Massagrande M, Montanari D, Martinelli P, Antolini M, Ciccocioppo R, Massi M, Merlo-Pich E, Di Fabio R, Corsi M. Role of orexin-1 receptor mechanisms on compulsive food consumption in a model of binge eating in female rats. Neuropsychopharmacology. 2012;37(9):1999-2011.
Cason AM, Aston-Jones G. Attenuation of saccharin-seeking in rats by orexin/hypocretin receptor 1 antagonist. Psychopharmacology (Berl). 2013;228(3):499-507.
Cason AM, Aston-Jones G. Role of orexin/hypocretin in conditioned sucrose-seeking in rats. Psychopharmacology (Berl). 2013;226(1):155-165.
Oishi Y, Williams RH, Agostinelli L, Arrigoni E, Fuller PM, Mochizuki T, Saper CB, Scammell TE. Role of the medial prefrontal cortex in cataplexy. J Neurosci. 2013;33(23):9743-9751.
Burgess CR, Oishi Y, Mochizuki T, Peever JH, Scammell TE. Amygdala lesions reduce cataplexy in orexin knock-out mice. J Neurosci. 2013;33(23):9734-9742.
Yamanaka A, Beuckmann CT, Willie JT, Hara J, Tsujino N, Mieda M, Tominaga M, Yagami K, Sugiyama F, Goto K, Yanagisawa M, Sakurai T. Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron. 2003;38(5):701-713.
Sakurai T. The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci. 2007;8(3):171-181.
Alam MA, Kumar S, McGinty D, Alam MN, Szymusiak R. Neuronal activity in the preoptic hypothalamus during sleep deprivation and recovery sleep. J Neurophysiol. 2014;111(2):287-299.
Salin-Pascual RJ. [Hypocretins and adenosine in the regulation of sleep]. Rev Neurol. 2004;39(4):354-358.
Darukhanavala APS. Sleep and Obesity in Children and Adolescents. In: Reviews A, ed. Global Perspective on Chilhood Obesity. USA: Elsevier Inc. ; 2011:167-241.
Magee L, Hale L. Longitudinal associations between sleep duration and subsequent weight gain: a systematic review. Sleep Med Rev. 2012;16(3):231-241.