2011, Number 2
<< Back Next >>
Ann Hepatol 2011; 10 (2)
Familial hypobetalipoproteinemia in a hospital survey: genetics, metabolism and non-alcoholic fatty liver disease
Gutiérrez-Cirlos C, Ordóñez-Sánchez ML, Tusié-Luna MT, Patterson BW, Schonfeld G, Aguilar-Salinas CA
Language: English
References: 36
Page: 155-164
PDF size: 127.29 Kb.
ABSTRACT
Introduction. Familial hypobetalipoproteinemia (FHBL) is an autosomal dominant disease characterized by
abnormally low levels of apolipoprotein-B (apoB) containing lipoproteins. FHBL is caused by
APOB, PCSK9 or
ANGPTL3 mutations or is associated with loci located in chromosomes 10 and 3p21. However, other genes
should be involved. This study describes the kinetic parameters of the apoB containing lipoproteins and
sequence abnormalities of the
APOB and
PCSK9 genes of FHBL patients identified in a large hospital based
survey.
Material and methods. Cases with primary or secondary causes of hypobetalipoproteinemia were
identified. ApoB kinetics were measured in cases with primary forms in whom truncated forms of apoB
were not present in VLDL (n = 4). A primed constant infusion of [
13C] leucine was administered, VLDL and
LDL apoB production and catabolic rates measured by a multicompartmental model and compared to normolipemic
controls. In addition, these subjects had an abdominal ultrasound and direct sequencing was
carried out for the PCSK9 and apoB genes.
Results. Three individuals had normal apoB production with increased
catabolic rate; the remaining had reduced synthetic and catabolic rates. Various polymorphisms,
some of them previously unreported (*), in the PCSK9 gene (R46L, A53V, I474V, D480N*, E498K*) and in the
apoB gene (N441D*, Y1395C, P2712L, D2285E*, I2286V, T3540S*, T3799M*) were found in the FHBL patients.
We found hepatic ultrasound changes of hepatic steatosis in only one of the four probands.
Conclusion.
FHBL without truncated apoB is a heterogeneous disease from a metabolic and a genetic perspective.
Hypobetalipoproteinemia is a risk factor but not an obligate cause of steatosis.
REFERENCES
Tarugi P, Averna M, Di Leo E, Cefalù AB, Noto D, Magnolo L, Cattin L, et al. Molecular diagnosis of hypobetalipoproteinemia: An ENID review. Atherosclerosis 2007; 197: 19-27.
Schonfeld G. Familial hypobetalipoproteinemia: a review. J Lipid Res 2003; 44: 878-83.
Anderson KM, Castelli WP, Levy D. Cholesterol and mortality 30 years of follow-up from the Framingham Study. JAMA 1987; 257: 2176-80.
Tanoli T, Yue P, Yablonski D, Schonfeld G. Fatty liver in familial hypobetalipoproteinemia: roles of the APOB defects intra-abdominal adipose tissue and insulin sensitivity. J Lipid Res 2004; 45: 941-7.
Welty FK, Lahoz C, Tucker KL, Ordovas JM, Wilson PWF, Schafer EJ. Frequency of ApoB and ApoE gene mutations as causes of hypobetalipoproteinemia in the Framingham offspring population. Arterioscler Thromb Vasc Biol 1998; 8: 1745-51.
Aguilar-Salinas CA, Barrett PH, Parhofer KG, Young SG, Tesserau D, Bateman J, Quinn C, et al. Apoprotein B-100 production is decreased in subjects heterozygous for truncations of apoprotein B. Arterioscler Thromb Vasc Biol 1995; 15: 71-80.
Parhofer KG, Daugherty A, Kinoshita M, Schonfeld G. Enhanced clearance from plasma of low density lipoproteins containing a truncated apolipoprotein apoB-89. J Lipid Res 1990; 31: 2001-7.
Zhu XF, Noto D, Seip R, Shaish A, Schonfeld G. Organ loci of catabolism of short truncations of apoB. Arterioscler Thromb Vasc Biol 1997; 17: 1032-8.
Chen ZI, Saffitz JE, Latour MA, Schonfeld G. Truncated apo B-70 containing lipoproteins bind to megalin but not the LDL receptor. J Clin Invest 1999; 103: 1419-30.
Wu J, Kim J, Li Q, Kwok PY, Cole TG, Cefalù B, Averna M, et al. Known mutations of apoB account for only a small minority of hypobetalipoproteinemia. J Lipid Res 1999; 40: 955-9.
Latour MA, Patterson BW, Pulai J, Chen Z, Schonfeld G. Metabolism of apolipoprotein B-100 in a kindred with familial hypobetalipoproteinemia without a truncated form of apoB. J Lipid Res 1997; 38: 592-9.
Parhofer KG, Barrett HR. What we have learned about VLDL and LDL metabolism from human kinetics studies. J Lipid Res 2006; 47:1620-30.
Yuan B, Neuman R, Duan SH, Weber JL, Kwok PY, Saccone NL, et al. Linkage of a gene for familial hypobetalipoproteinemia to chromosome 3p21,1-22. Am J Hum Genet 2000; 66: 1699-704.
Elias N, Patterson BW, Schonfeld G. In vivo metabolism of ApoB ApoA-1 and VLDL triglycerides in a form of hypobetalipoproteinemia not linked to the apoB gene. Arterioscler Thromb Vasc Biol 2000; 20: 1309-15.
Burnett JR, Zhong S, Jiang ZG, Hooper AJ, Fisher EA, McLeod RS, Zhao Y, et al. Missense mutations in APOB within the á1 domain of human ApoB result in impaired secretion of ApoB and ApoB-containing lipoproteins in familial hypobetalipoproteinemia. J Biol Chem 2007; 282: 24270-83.
Benn M, Nordestgaard BG, Jensen JS, Nilausen K, Meinertz H, Tybjaerg-Hansen A. Mutation in apolipoprotein B associated with hypobetalipoproteinemia despite decreased binding to the low density lipoprotein receptor. J Biol Chem 2005; 280: 21052-60.
Benn M, Stene MC, Nordestgaard BG, Jensen GB, Steffensen R, Tybjærg-Hansen A. Common and rare alleles in apolipoprotein B contribute to plasma levels of LDL-cholesterol in the general population. J Clin Endocrin Metab 2008; 93: 1038-45.
Dunning MA, Renges HH, Xu CF, Peacock R, Brasseur R, Laxer G, Tikkanen MJ, et al. Two amino acid substitutions in apolipoprotein B are in complete allelic association with the antigen group (x/y) polymorphism: evidence for little recombination in the 3’ end of the human gene. Am J Hum Genet 1992; 50: 208-21.
Leren PT, Bakken SK, Hoel V, Hjermann I, Berg K. Screening for mutations of the apolipoprotein B gene causing hypocholesterolemia. Hum Genet 1998; 102: 44-9.
Abifadel M, Varret M, Rabés JP, Allard D, Ouguerram K, Devillers M, Cruaud C, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Gen 2003; 34: 154-6.
Kotowski IK, Pertsemlidis A, Luke A, Cooper RS, Vega GL, Cohen JC, Hobbs HH. A spectrum of PCSK9 alleles contributes to plasma levels of low-density lipoprotein cholesterol. Am J Hum Genet 2006; 78: 410-22.
Cohen J, Pertsemlidis A, Kotowski IK, Graham R, Garcia CK, Hobbs HH. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Gen 2005; 37: 161-5.
Scartezini M, Hubbart C, Whittall RA, Cooper JA, Neil AHW, Humphries SE. The PCSK9 gene R46L variant is associated with lower plasma lipid levels and cardiovascular risk in healthy U.K. men. Clin Sci 2007; 113: 435-41.
Fasano T, Cefalú AB, Di Leo E, Noto D, Pollaccia D, Bocchi L, Valenti V, et al. A novel loss of function mutation of PCSK9 gene in white subjects with low-plasma low-density lipoprotein cholesterol. Arterioscler Thromb Vasc Biol 2007; 27: 677-81.
Abifadel M, Rabès JP, Devillers M, Munnich A, Erlich D, Junien C, Varret M, Boileau C. Mutations and polymorphisms in the proprotein convertase subtilisin kexin 9 (PCSK9) gene in cholesterol metabolism and disease. Hum Mutat 2009; 30: 520-9.
Musunuru K, Pirruccello JP, Do R, Peloso GM, Giuducci C, Sougnez C, et al. Exome sequencing, ANGPTL3 mutations and familial combined hypolipidemia. New Eng J Med 2010; 363: 2220-7.
Aguilar-Salinas CA, Olaiz G, Valles V, Ríos Torres JM, Gómez Pérez FJ, Rull JA, et al. High prevalence of low HDL cholesterol concentrations and mixed hiperlipidemia in a Mexican nationwide survey. J Lipid Res 2001; 42: 1298-307.
Parhofer KG, Barrett HR, Bier DM, Schonfeld G. Determination of kinetic parameters of apolipoprotein B metabolism using amino acids labeled with isotopes. J Lipid Res 1991; 32: 1311-17.
Marsh JB, Welty FK, Lichtenstein AH, Lamon-Fava S, Schaefer EJ. Apolipoprotein B metabolism in humans: studies with stable isotope-labeled amino acid precursors. Atherosclerosis 2002; 162: 227-44.
Barrett HR, Chan DC, Watts GF. Thematic review series: patient oriented research, design and analysis of lipoprotein tracer kinetics in humans. J Lipid Res 2006; 47: 1607-19.
Adams RF. Determination of amino acid profiles in biological samples by gas chromatography. J Chromatog 1974; 95: 189-212.
Klein RL, Zilversmit DB. Direct determination of human and rabbit apolipoprotein B selectively precipitated with butanol- isopropyl-ether. J Lipid Res 1984; 25: 1380-6.
Hixson JE, Vernier DT. Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. J Lipid Res 1990; 31: 545-8.
Roldan-Valadez E, Favila R, Martínez-López M, Uribe M, Méndez-Sánchez N. Imaging techniques for assessing hepatic fat content in nonalcoholic fatty liver disease. Ann Hepatol 2008; 7: 212-20.
Noto D, Cefalù AB, Canizzaro A, Minà A, Fayer F, Valenti F, et al. Familial hypobetalipoproteinemia due to apolipoprotein B R463W mutation causes intestinal fat accumulation and low postprandial lipemia. Atherosclerosis 2009; 206: 193-8.
Zhong S, Magnolo AL, Sundaram M, Zhou H, Yao EF, Di Leo E, Loria P, et al. Nonsynonymous mutations within APOB in human familial hypobetalipoproteinemia. J Biol Chem 2010; 285: 6453-64.