2015, Number 2
<< Back Next >>
MEDICC Review 2015; 17 (2)
Spatial models for prediction and early warning of Aedes aegypti proliferation from data on climate change and variability in Cuba
Ortiz BPL, Rivero VA, Linares VY, Pérez CA, Vázquez CJR
Language: English
References: 72
Page: 20-28
PDF size: 334.67 Kb.
ABSTRACT
INTRODUCTION Climate variability, the primary expression of climate change, is one of the most important environmental problems affecting human health, particularly vector-borne diseases. Despite research efforts worldwide, there are few studies addressing the use of information on climate variability for prevention and early warning of vector-borne infectious diseases.
OBJECTIVE Show the utility of climate information for vector surveillance by developing spatial models using an entomological indicator and information on predicted climate variability in Cuba to provide early warning of danger of increased risk of dengue transmission.
METHODS An ecological study was carried out using retrospective and prospective analyses of time series combined with spatial statistics. Several entomological and climatic indicators were considered using complex Bultó indices -1 and -2. Moran’s I spatial autocorrelation coefficient specified for a matrix of neighbors with a radius of 20km, was used to identify the spatial structure. Spatial structure simulation was based on simultaneous autoregressive and conditional autoregressive models; agreement between predicted and observed values for number of Aedes aegypti foci was determined by the concordance index Di and skill factor Bi.
RESULTS Spatial and temporal distributions of populations of
Aedes aegypti were obtained. Models for describing, simulating and predicting spatial patterns of
Aedes aegypti populations associated with climate variability patterns were put forward. The ranges of climate variability affecting Aedes aegypti populations were identified. Forecast maps were generated for the municipal level.
CONCLUSIONS Using the Bultó indices of climate variability, it is possible to construct spatial models for predicting increased
Aedes aegypti populations in Cuba. At 20 x 20 km resolution, the models are able to provide warning of potential changes in vector populations in rainy and dry seasons and by month, thus demonstrating the usefulness of climate information for epidemiological surveillance.
REFERENCES
Navarrete-Espinosa J. Prevalencia de anticuerpos contra dengue y leptospira en la población de Jáltipan. Salud Pública México. 2006 May– Jun;48(3):220–8. Spanish.
Pérez Martínez TT, Iñiguez Rojas L, Sánchez Valdés L, Remond Noa R. Vulnerabilidad espacial al dengue, una aplicación de los sistemas de información geográfi ca en el municipio Playa de Ciudad de La Habana. Rev Cubana Salud Pública. 2003 Oct–Dec;29(4):353–65. Spanish.
World Health Organization; World Meteorological Organization. Atlas of health and climate. Geneva: World Health Organization; 2012. p. 20–3.
Rojas MC, Cifuentes E, Rodríguez JR, Valdés RI. Indicadores del ecosistema para la prevención y control del dengue en un municipio de Cotorro (Cuba). Hig Sanid Ambiental Granada. 2006;6:138–44. Spanish.
López Vélez R, Molina Moreno R. Cambio climático en España y riesgo de enfermedades infecciosas y parasitarias transmitidas por artrópodos y roedores. Rev Esp Salud Pública. 2005 Mar–Apr;79(2):177–90. Spanish.
Hales S, de Wet N, Maindonald J, Woodward A. Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet. 2002 Sep 14;360(9336):830–4.
San Martín JL, Brathwaite-Dick O. La estrategia de gestión integrada para la prevención y control del dengue en la región de las Américas. Rev Panam Salud Pública. 2007 Jan;21(1):55–63. Spanish.
Espinoza Gómez F, Hernández Suárez CM, Coll Cárdenas R. Factores que modifi can los índices larvarios de Aedes aegypti en Colima, México. Rev Panam Salud Pública. 2001 Jul;10(1):6–12. Spanish.
Meléndez Herrada E, Ramírez Pérez M, Sánchez Dorantes BG, Cravioto A. Cambio climático y sus consecuencias en las enfermedades infecciosas. Rev Fac Med UNAM. 2008 Sep– Oct;51(5):205–8. Spanish.
Gagnon AS, Bush ABG, Smoyer-Tomic KE. Dengue epidemics and the El Niño Southern Oscillation. Clim Res. 2001 Nov 22;19(1):35–43.
Kuhn K, Campbell-Lendrum D, Haines A, Cox J. Using climate to predict infectious disease epidemics. Geneva: World Health Organization; 2005. p. 29–30.
Mendoza O, Gómez S. Entomología General. Havana: Editorial Pueblo y Educación; 1982. p. 156–96. Spanish.
Reinert JF, Harbach RE, Kitching IJ. Phylogeny and classifi cation of Aedini (Diptera: Culicidae), based on morphological character of all life stages. Zoological J Linnean Soc. 2004 Nov 8;142(3):289–368.
Pan American Health Organization. Programa de erradicación de dengue y erradicación de Aedes aegypti. Bol Epid. 1982;3(1):7–10. Spanish.
Varma MG. Geographical distribution of arthropod- borne diseases and their principal vectors. Geneva: World Health Organization; 1989.
Ortíz PL, Nieves Poveda ME, Guevara Velazco AV. Models for setting up a biometeorological warning system over a populated area in Havana. In: Urban Ecology. Berlin: Springer– Verlag; 1998. p. 87–91.
De la Torre SL, Alayo Dalmau P, Calderón Chapman M. Los mosquitos de Cuba, su biología y distribución geográfi ca de las especies de importancia médica. Mem Soc Cub Hist Nat. 1961 Sep;25(2):1–95. Spanish.
Moore CG, Cline BL, Ruiz-Tibén E, Lee D, Romney-Joseph H, Rivera-Correa E. Aedes aegypti in Puerto Rico: environmental determinants of larval abundance and relation to dengue virus transmission. Am J Trop Med Hyg. 1978 Nov;27(6):1225–31.
Rueda LM, Patel KJ, Axtell RC, Stineer RE. Temperature dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). J Med Entomol. 1990 Sep;27(5):892–8.
Ortiz PL, Pérez A, Rivero A, Pérez A, Canga R. Sector Salud. In: Planos E, Rivero R, Guevara V, editors. Impacto del cambio climático y medidas de adaptación en Cuba. Havana: Ministry of Science, Technology and the Environment (CU); 2013. Chapter 10. p. 401–29. Spanish.
McMichael AJ, editor. Climate change and human health: risks and responses [Internet]. Geneva: World Health Organization; 2003 [cited 2015 Jan 17]. 37 p. Available from: http://www .who.int/malaria/publications/atoz/9241590815/en/
Brady OJ, Johansson MA, Guerra CA, Bhatt S, Golding N, Pigott DM, et al. Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and fi eld settings. Parasit Vectors. 2013 Dec 12;6:351. DOI: 10.1186/1756-3305-6-351.
de Castro Medeiros LC, Castilho CA, Braga C, de Souza WV, Regis L, Monteiro AM. Modeling the dynamic transmission of dengue fever: investigating disease persistence. PLoS Negl Trop Dis. 2011 Jan;5(1):e942. DOI: 10.1371/journal.pntd.0000942.
McMichael AJ, Woodruff RE, Hales S. Climate change and human health: present and future risks. Lancet. 2006 Mar 11;367(9513):859–69.
Rogers DJ. Models for vectors and vector-borne diseases. Adv Parasitol. 2006;62:1–35.
Myers MF, Rogers DJ, Cox J, Flahault A, Hay SI. Forecasting disease risk for increased epidemic preparedness in public health. Adv Parasitol. 2000;47:309–30.
Hay SI, Lennon JJ. Deriving meteorological variables across Africa for the study and control of vector-borne disease: a comparison of remote sensing and spatial interpolation of climate. Trop Med Int Health. 1999 Jan;4(1):58–71.
Hay SI, Myers MF, Burke DS, Vaughn DW, Endy T, Ananda N, et al. Etiology of interepidemic periods of mosquito-borne disease. Proc Natl Acad Sci USA. 2000 Aug 1;97(16):9335–9.
Hay SI, Packer MJ, Rogers DJ. The impact of remote sensing on the study and control of invertebrate intermediate hosts and vectors for disease. Int J Remote Sensing. 1997;18(14):2899–930.
Hay SI, Rogers DJ, Shanks DG, Myers MF, Snow RW. Malaria early warning in Kenya. Trends Parasitol. 2001 Feb;17(2):95–9.
Hay SI, Snow RW, Rogers DJ. From predicting mosquito habitat to malaria seasons using remotely sensed data: practice, problems and perspectives. Parasitol Today. 1998 Aug;14(8):306–13.
Hay SI, Tucker CJ, Rogers DJ, Packer MJ. Remotely sensed surrogates of meteorological data for the study of the distribution and abundance of arthropod vectors of disease. Ann Trop Med Parasitol. 1996 Feb;90(1):1–19.
World Health Organization [Internet]. Geneva: World Health Organization; c2015. Global environmental change. Using climate to predict diseases outbreaks: a review; 2004 [cited 2015 Jan 17]; [about 1 screen]. Available from: http://www .who.int/globalchange/publications/oeh0401/en/
Fuller DO, Troyo A, Beier JC. El Niño Southern Oscillation and vegetation dynamics as predictors of dengue fever cases in Costa Rica. Environ Res Lett. 2009 Mar 4;4:140111–8.
Lecha L, Méndez T. Relación entre las cardiopatías isquémicas y una selección de parámetros meteorológicos. Havana: Editorial Academia; 1977. p. 13. Spanish.
Lecha L. La bioclimatología y algunas de sus aplicaciones en condiciones de clima tropical húmedo. Havana: Editorial Academia; 1989. p. 35. Spanish.
Lecha L. Estudio bioclimático de la provincia de Cienfuegos. Havana: Editorial Academia; 1993. 148 p. Spanish.
Toledo H. Estudios de la factibilidad para pronosticar los incrementos de las consultas por asma bronquial y por infecciones respiratorias agudas [thesis]. [Havana]: University of Medical Sciences of Havana; 1992. Spanish.
Ortiz PL, Rivero VA, Pérez RA. Modelos autorregresivos espaciales para la simulación y pronósticos de enfermedades desde condiciones climáticas. Rev Cubana Meteorol. 2005 Mar;12(1):73–92. Spanish.
Ortiz PL. Enfoque metodológico para evaluar los efectos de la variabilidad y/o el cambio climático sobre el comportamiento de las enfermedades relacionadas con el agua. In: Libro de las Memorias de la Feria del Agua. Panamá: CATHALAC; 2002 Dec. Spanish.
Bultó PL, Rodríguez AP, Valencia AR, Vega NL, González MD, Carrera AP. Assessment of human health vulnerability to climate variability and change in Cuba. Environ Health Perspect. 2006 Dec;114(12):1942–9.
Ortíz PL, Pérez AR, Rivero VA, Pérez AC, Ramón CJ, Lecha LE. La variabilidad y el cambio climático en Cuba: potenciales impactos en la salud humana. Rev Cubana Salud Pública. 2008 Jan–Mar;34:(1). Spanish.
Ortíz Bultó PL, Lecha Estela L, Rivero Valencia A, Pérez Rodríguez A. Assessment of human health vulnerability in Cuba due to climate or weather variability and change. In: Grover VI, editor. Global warming and climate change: Kyoto - ten years and still counting. Vol. 2. New Hampshire (US): Science Publishers; 2008. p. 847–88.
Peralta Martín A, Rivero Valencia A, Ortíz Bultó PL, Pérez Carreras A. Aplicación del índice climático de Bultó y NDVI captado desde el sensor AVHRR en el estudio del comportamiento del número de focos de Aedes aegypti en Cuba. Rev Meteorol Colombiana. 2008 Mar;12:31–9. Spanish.
González J, Aparicio M, López V. Vulnerabilidad y adaptación de la salud humana ante los cambios climáticos en Bolivia. Programa de cambios climáticos. La Paz: Ministry of Sustainable Development and Planning (BL); 2000. 154 p. Spanish.
Ortiz Bultó PL, Guevara AV, Ulloa J, Aparicio M. Principios metodológicos para la evaluación de impacto de la variabilidad y el cambio climático en la salud humana. Un enfoque estadístico. Rev Meteorol Colombia. 2001 Mar;3:75–84. Spanish.
Ulloa J, Ortiz Bultó PL. Impacto del cambio climático en el sector salud de Panamá. Rev Meteorol Colombia. 2001 Mar;3:85–92. Spanish.
Ortiz PL, Morgados F. Efectos del clima sobre el patrón epidemiológico del asma bronquial en Guanabacoa durante el período 1997–2001. Rev Cubana Meteorol. 2003 Mar;10(1):61–6. Spanish.
Ortiz PL, Rivero AV. Índices climáticos para la determinación y simulación de las señales de la variabilidad climática en diferentes escalas espacio temporales. Rev Cubana Meteorol. 2004 Mar;11(1):21–30. Spanish.
Cliff AD, Ord JK. Spatial autocorrelation. London: Pion; 1973. 178 p.
Cliff AD, Ord JK. Spatial process. Models and applications. London: Pion; 1981. 266 p.
Anselin L. Spatial econometrics. In: Baltagi BH, editor. Companion to theoretical econometrics. New Jersey: Blackwell Publishing; 2001. p. 310–30.
Chasco C. Econometría especial aplicada a la predicción extrapolación de datos microterritoriales. Consejería de Económica e Innovación Tecnológica. Madrid: Ed. Príncipe de Vergara; 2003. Spanish.
Gaetan C, Guyon X. Spatial statistics and modeling. Berlin: Springer Science; 2010. 248 p.
Anselin L. Local Indicators of Spatial Association— LISA. Geograph Analysis. 1995 Apr;27(2):93–115.
Anselin L. The Moran scatterplot as an ESDA tool to assess local instability in spatial association. In: Fischer M, Scholten H, Unwin D, editors. Spatial Analytical: Perspectives on GIS. London: Taylor and Francis; 1996. p. 111–25.
Paelinck JHP, Klaassen LH. Spatial econometrics. London: Saxon House;1979 Sep. 224 p.
Hubert LJ, Golledge RG, Costanzo CM. Generalized procedures for evaluating spatial autocorrelation. Geograph Analysis. 1981 Jul;13(3):224–33.
Anselin L. Exploratory spatial data analysis in a geocomputational environment. GeoComputation, a primer. New York: Wiley; 1998. p. 77–94.
Anselin L. Exploring spatial data with GeoDaTM: a workbook. Urbana (US): University of Illinois; 2005 Mar. 224 p.
Moreno R, Vayá E. Técnicas econométricas para el tratamiento de datos espaciales: la econometría espacial. Barcelona: Editorial Universidad de Barcelona; 2000. 158 p. Spanish.
Willmott CJ. Some comments on the evaluation of model performance. Bull Am Meteor Soc.1982 Nov;63(11):1309–13.
Livezey RE. The evaluation of forecasts. In: von Storch H, Navarra A, editors. Analysis of climate variability. Berlin: Springer; 1995. p. 177–96.
Azil AH, Long SA, Ritchie SA, Williams CR. The development of predictive tools for pre-emptive dengue vector control: a study of Aedes aegyti abundance and meteorological variables in North Queensland, Australia. Trop Med Int Health. 2010 Oct;15(10):1190–7.
Johansson MA, Dominici F, Glass GE. Local and global effects of climate on dengue transmission in Puerto Rico. PLoS Negl Trop Dis. 2009;3(2):e382.
Kelly-Hope L, Thomson MC. Climate and infectious diseases. In: Thompson MC, Herrera RG, Beniston M, editors. Seasonal forecasts, climatic change, and human health. Dordretch (NL): Springer; 2008. p. 31–70.
Clements AN. The Biology of Mosquitoes. Sensory reception and behavior. 1st ed. Vol. 2. London: CABI; 1999 Jun. 752 p.
Micieli MV, Campos RE. Oviposition activity and seasonal pattern of a population of Aedes (Stegomyia) aegypti (L.) (Diptera: Culicidae) in subtropical Argentina. Mem Inst Oswaldo Cruz. 2003 Jul;98(5):659–63.
Gage KL, Burkot TR, Eisen RJ, Hayes EB. Climate and vector-borne diseases. Am J Preventive Med. 2008 Nov;35(5):436–50.
Rodhain F, Rosen L. Mosquito vectors and dengue virus-vector relationships. In: Gubler DJ, Kuno G, editors. Dengue and dengue hemorrhagic fever. Cambridge: University Press Cambridge; 1997. p. 45–61.
Johansson MA, Cummings DA, Glass GE. Multiyear climate variability and dengue-El Niño Southern Oscillation, weather, and dengue incidence in Puerto Rico, Mexico, and Thailand: a longitudinal data analysis. PLoS Med. 2009 Nov;6(11):e1000168.
Stenseth NC, Ottersen G, Hurrell JW, Mysterud A, Lima M, Chan KS, et al. Review article. Studying climate effects on ecology through the use of climate indices: the North Atlantic Oscillation, El Niño Southern Oscillation and beyond. Proc R Soc Lond B. 2003 Oct 22;270(1529):2087–96.