2016, Number 2
<< Back Next >>
Ann Hepatol 2016; 15 (2)
Redox state and methods to evaluate oxidative stress in liver damage: From bench to bedside
Arauz J, Ramos-Tovar E, Muriel P
Language: English
References: 107
Page: 160-173
PDF size: 297.19 Kb.
ABSTRACT
Oxidative stress is importantly involved in the pathophysiology of various liver diseases. The redox state participates on the course
of the inflammatory, metabolic and proliferative liver diseases. The main sources of the reactive oxygen species (ROS) are represented
by the mitochondria and cytochrome P450 enzymes in the hepatocyte, Kupffer cells and neutrophils. Cells are provided with efficient
molecular strategies to strictly control the intracellular ROS level and to maintain the balance between oxidant and antioxidant
molecules. Hepatocyte’s proteins, lipids and DNA are among the cellular structures to be affected primarily by ROS and reactive nitrogen
species (RNS). This process disrupts at cellular and molecular level the structure-function relationship on liver cells at different
sites. Therefore, further studies on the molecular mechanisms of the oxidative stress pathways on liver diseases are urgently
required, because they could explain the pathogenesis of various liver disorders. Moreover, new methods to evaluate oxidative stress
like the oxidative markers among hepatocytes offers the potential to diagnose the degree of liver injury and ultimately to assess the
response to pharmacological therapies. In this review, we discuss the molecular, metabolic and aging aspects of the oxidative
stress, and the methods to evaluate oxidative stress on liver damage.
REFERENCES
Cortez-Pinto H. Oxidative stress in alcoholic and nonalcoholic liver disease. In: Leuscher U, James OFW, Dancygier H (eds.). Steatohepatitis (NASH and ASH).Frankfurt: Kluwer Academic Publishers; 2001, p. 54-61.
Apostolova N, Blas-Garcia A, Esplugues JV. Mitochondria sentencing about cellular life and death: a matter of oxidative stress. Curr Pharm Des 2011; 36: 4047-60.
Lai MM. Hepatitis C virus proteins: direct link to hepatic oxidative stress, steatosis, carcinogenesis and more. Gastroenterology 2002; 122: 557-68.
Taub R. Liver regeneration: from myth to mechanism. Nat Rev Mol Cell Biol2004; 5: 836-47.
Irshad M. Oxidative stress in liver diseases. Trop Gastroenterol 2002; 23: 6-8.
Lee J, Giordano S, Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signaling. Biochem J 2012; 441: 523-40.
Marí M, Colell A, Morales A, Von Montfort C, Garcia-Ruiz C, Fernández-Checa JC. Redox control of liver function in health and disease. Antiox Redox Signal 2010; 12: 1295-331.
Sies H. Oxidative stress: introductory remarks. In: Sies H (ed.). Oxidative Stress. London: Academic Press; 1985, p. 1-9.
Fridovich I. Superoxide radical and superoxide dismutases. Annu Rev Biochem 1995; 64: 97-112.
Brigelius-Flohe R. Tissue-specific functions of individual glutathione peroxidases. Free RadicBiol Med 1999; 27: 951-65.
Schafer FQ. Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/ glutathione couple. Free Radic Biol Med 2001; 30: 1191-212.
Masella R, Di Benedetto R, Vari R, Filesi C, Giovannini C. Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione related enzymes. J Nutr Biochem 2005; 16: 577-86.
Sagone Jr. AL, Husney RM, O’Dorisio MS, Metz EN. Mechanisms for the oxidation of reduced glutathione by stimulated granulocytes. Blood 1984; 63: 96-104.
Calabrese V, Cornelius C, Rizzarelli E, Owen JB, Dinkova- Kostova AT, Butterfield DA. Nitric oxide in cell survival: a Janus molecule. Antiox Redox Sign 2009; 11: 2717-39.
Kalyanaraman B, Karoui H, Singh RJ, Feli CC. Detection of thiyl radical adducts formed during hydroxyl radical- and peroxynitrite-mediated oxidation of thiols-a high resolution ESR spin- trapping study at Q-band (35 Ghz). Anal Biochem 1996; 241: 75-81.
Rhodes CJ. Electron spin resonance. Part one: a diagnostic method in the biomedical sciences. Sci Prog 2011; 94: 16-96.
Spasojević I. Electron paramagnetic resonance - A powerful tool of medical biochemistry in discovering mechanisms of disease and treatment prospects. J Med Biochem 2010; 29: 175-88.
Esterbauer H,Cheeseman KH, Dianzani MU. Separation and characterization of the aldehydic products of lipid peroxidation stimulated by ADP-Fe2+ in rat liver microsomes. Biochem J 1982; 208: 129-40.
Valgimigli L, Valgimigli M, Gaiani S, Pedulli GF, Bolondi L. Measurement of oxidative stress in human liver by EPR spinprobe technique. Free Radic Res 2000; 33: 167-78.
Niki E. Lipid peroxidation: physiological levels and dual biological effects. Free RadicBiol Med 2009; 47:469-84.
Esterbauer H, Cheeseman KH, Dianzani MU. Separation and characterization of the aldehydic products of lipid peroxidation stimulated by ADP-Fe2+ in rat liver microsomes. Biochem J 1982; 208: 129-40.
Poli G, Dianzani MU, Cheeseman KH, Slater TF, Lang J, Esterbauer H. Separation and characterization of the aldehydic products of lipid peroxidation stimulated by carbon tetrachloride or ADP-iron in isolated rat hepatocytes and rat liver microsomal suspensions. Biochem J 1985; 227: 629-38.
Dalle-Donne I, Rossi R, Colombo R, Gustarini D, Milzani A. Biomarkers of oxidative damage in human disease. ClinChem2006; 52: 601-23.
Liu J, Yeo HC, Doniger SJ, Ames BN. Assay of aldehydes from lipid peroxidation: gas chromatography-mass spectrometry compared to thiobarbituric acid. Anal Biochem 1997; 245: 161-6.
Yoshida Y, Kodai S, Takemura S, Minamiyama Y, Niki. Simultaneous measurement of F2-isoprostane, hydroxyoctadecadienoic acid, hydroxyeicosatetraenoic acid, and hydroxycholesterols from physiological samples. Anal Biochem 2008; 379: 105-15.
Lykkesfeldt J. Malonaldehyde as biomarker of oxidative damage to lipids caused by smoking. Clinic ChimActa 2007; 380: 50-8.
Asano M, Adachi J, Ueno Y. Cholesterol-derived hydroperoxides in alcoholic liver disease. Lipids 1999; 34: 557-61.
Moreau R, Nguyen BT, Doneanu CE, Hagen TM. Reversal by aminoguanidine of the age-related increase in glycoxidation and lipoxidation in the cardiovascular system of Fischer 344 rats. Biochem Pharmacol 2005; 69: 29-40.
Kim CH, Zou YN, Kim DH, Kim ND, Yu BP, Chung HY. Proteomic analysis of nitrated and 4-hydroxy-2-nonenal modified serum proteins during aging. J Gerontol A BiolSci Med Sci 2006; 61: 332-8.
Poli G, Biasi F, Leonarduzzi G. 4-Hydroxynonenal-protein adducts: A reliable biomarker of lipid oxidation in liver diseases. Mol Aspects Med 2008; 29: 67-71.
Esterbauer H, Cheeseman K. Determination of aldehydic lipid peroxidation products: malondialdehyde and 4-hydroxynonenal. Method Enzymol 1990; 186: 407-21.
Fenaille F, Guy PA, Tabet JC. Study of protein modification by 4-hydroxy-2-nonenal and other short chain aldehydes analyzed by electrospray ionization tandem mass spectrometry. J Am Soc Mass Spectrom 2003; 14: 215-26.
Aldini G, Gamberoni L, Orioli M, Beretta G, Regazzoni L, Maffei Facino R, Carini M. Mass spectrometric characterization of covalent modification of human serum albumin by 4-hydroxy- trans-2-nonenal. J Mass Spectrom 2006; 41: 1149-61.
Gueraud F, Peiro G, Bernard H, Alary J, Creminon C, Debrauwer L, Rathahao E, et al. Enzyme immunoassay for a urinary metabolite of 4-hydroxynonenal as a marker of lipid peroxidation. Free Radic Biol Med 2006; 40: 54-62.
Massarenti P, Biasi F, De Francesco A, Pauletto D, Rocca G, Silli B, Vizio B, et al. 4-Hydroxynonenal is markedly higher in patients on a standard long-term home parenteral nutrition. Free Radic Res 2004; 38: 73-80.
Toyokuni S, Miyake N, Hiai H, Hagiwara M, Kawakishi S, Osawa T, Uchida K. The monoclonal antibody specific for the 4-hydroxy-2-nonenal histidine adduct. FEBS Lett 1995; 359: 189-91.
Stĺl P. Liver fibrosis in non-alcoholic fatty liver disease - diagnostic challenge with prognostic significance. World J Gastroenterol 2015; 21: 11077-87.
Sanyal AJ, Campbell-Sargent C, Mirshahi F, Rizzo WB, Contos MJ, Sterling RK, Luketic VA, etal. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology 2001; 120: 1183-92.
Madan K, Bhardwaj P, Thareja S, Gupta SD, Saraya A. Oxidant stress and antioxidant status among patients with nonalcoholic fatty liver disease (NAFLD). J ClinGastroenterol 2006; 40: 930-5.
Yesilova Z, Yaman H, Oktenli C, Ozcan A, Uygun A, Cakir E, Sanisoglu SY, et al. Systemic markers of lipid peroxidation and antioxidants in patients with nonalcoholic fatty liver disease. Am J Gastroenterol 2005; 100: 850-5.
Shoeb M, Ansari NH, Srivastava SK, Ramana KV. 4-Hydroxynonenal in the pathogenesis and progression of human diseases.Curr Med Chem 2014; 21: 230-7.
Pilacik, Nofer TW, Wasowicz W. F2-isoprostanes biomarkers of lipid peroxidation: their utility in evaluation of oxidative stress induced by toxic agents. Int J Occup Med Environ Health 2000; 15: 19-27.
Morrow JD, Hill KE, Burk RF, Nammour TM, BadrKF, Roberts LJ 2nd. A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. ProcNatlAcadSci U S A 1990; 87: 9383-7.
Comporti M, Signorini C, Arezzini B, Vecchio D, Monaco B, Gardi C. F2-isoprostanes are not just markers of oxidative stress. Free Radic Biol Med 2008; 44: 247-56.
Meagher EA, Barry OP, Burke A, Lucey MR, Lawson JA, Rokach J, Fitzgerald GA. Alcohol-induced generation of lipid peroxidation products in humans. J Clin Invest 1999; 104: 805-13.
Nourooz-Zadeh J, Gopaul NK, Barrow S, Mallet AI, Anggĺrd EE. Analysis of F2-isoprostanes as indicators of nonenzymatic lipid peroxidation in vivo by gas chromatography-mass spectrometry: development of a solid- phase extraction procedure. J Chromatogr B Biomed Appl 1995; 667: 199-208.
Wang Z, Ciabattoni G, Crčminon C, Lawson J, Fitzgerald GA, Patrono C, Maclouf J. Immunological characterization of urinary 8-epi-prostaglandin F2a excretion in man. J Pharmacol ExperTher 1995; 275: 94-100.
Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R. Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 2003; 329: 23-38.
Kapaki E1, Liappas I, Lyras L, Paraskevas GP, Mamali I, Theotoka I, Bourboulis N, et al. Oxidative damage to plasma proteins in patients with chronic alcohol dependence: the effect of smoking. In Vivo 2007; 21: 523-8.
Sripradha R, Sridhar MG, Agrawal A. Can protein carbonyl/ glutathione ratio be used as a potential biomarker to assess oxidative stress in alcoholic hepatitis? Indian J Med Sci2010; 64: 476-83.
Buss H, Chan TP, Sluis KB, Domigan NM, Winterbourn CC. Protein carbonyl measurement by a sensitive ELISA method. Free Radic Biol Med 1997; 23: 361-6.
Shacter E, Williams JA, Lim M, Levine RL. Differential susceptibility of plasma proteins to oxidative modification. Examination by Western blot immunoassay. Free Radic Biol Med 1994; 17: 429-37.
Levine RL, Williams J, Stadtman ER, Shacter E. Carbonyl assays for determination of oxidatively modified proteins. Meths Enzymol 1994; 233: 346-57.
Voulgaridou GP, Anestopoulos I, Franco R, Panayiotidis MI, Pappa A. DNA damage induced by endogenous aldehydes: current state of knowledge. Mutat Res 2011; 711: 13-27.
Chuma M, Hige S, Nakanishi M, Ogawa K, Natsuizaka M, Yamamoto Y, Asaka M. 8-Hydroxy-2'-deoxy-guanosine is a risk factor for development of hepatocellular carcinoma in patients with chronic hepatitis C virus infection. J Gastroenterol Hepatol 2008; 23: 1431-6.
Li S, Wang X, Wu Y, Zhang H, Zhang L, Wang C, Zhang R, et al. 8-Hydroxy-2'-deoxyguanosine expression predicts hepatocellular carcinoma outcome. Oncol Lett 2012; 3: 338-42.
Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H. Free radical- induced damage to DNA: mechanisms and measurement. Free Radic Biol Med 2002; 32: 1102-15.
Floyd RA, Watson JJ, Harris J, West M, Wong PK. Hydroxyl free radical adduct of deoxyguanosine: sensitive detection and mechanisms of formation. Free Radic Res Comm 1986; 1: 163-72.
Matsumoto K, Satoh Y, Sugo H, Takamori S, Kojima K, Fukasawa M, Beppu T, et al. Immunohistochemical study of the relationship between 8-hydroxy-2'-deoxyguanosine levels in noncancerous region and postoperative recurrence of hepatocellular carcinoma in remnant liver. Hepatol Res 2003; 25: 435-41.
Townsend DM, Tew KD, Tapiero H. The importance of glutathione in human disease. Biomed Pharmacother 2003; 57: 145-55.
Chai YC, Ashraf SS, Rokutan K, Johnston Jr RB, Thomas JA. S-thiolation of individual human neutrophil proteins including actin by stimulation of the respiratory burst: evidence against a role for glutathione disulfide. Arch Biochem Biophys 1994; 10: 273-81.
Petrlova J, Mikelova R, Stejskal K, KleckerovaA, Zitka O, Petrek J, Havel L, et al. Simultaneous determination of eight biologically active thiol compounds using gradient elution-liquid chromatography with Coul-Array detection. J SepSci 2006; 29: 1166-73.
Iwasaki Y, Saito Y, Nakano Y, Mochizuki K, Sakata O, Ito R, Saito K, et al. Chromatographic and mass spectrometric analysis of glutathione in biological samples. J Chromatogr B Analyt Biomed Life Sci 2009; 877: 3309?17.
Mallikarjuna K, Shanmugam KR, Nishanth K, Wu MC, Hou CW, Kuo CH, Reddy KS. Alcohol-induced deterioration in primary antioxidant and glutathione family enzymes reversed by exercise training in the liver of old rats. Alcohol 2010; 44: 523-9.
Shanmugam KR, Mallikarjuna K, Reddy KS. Effect of alcohol on blood glucose and antioxidant enzymes in the liver and kidney of diabetic rats. Indian J Pharmacol 2011; 43: 330-5.
Chrobot AM, Szaflarska-Szczepanik A, Drewa G. Antioxidant defense in children with chronic viral hepatitis B and C. Med Sci Monit 2000; 6: 713-78.
Ciragil P, BelgeKurutas E, Kokoglu OF, Aral M. Oxidative stress in patients with chronic hepatitis B and C. Balkan Med J 2011; 28: 300-03.
Osman HG, Gabr OM, Lotfy S, Gabr S. Serum levels of bcl-2 and cellular oxidative stress in patients with viral hepatitis. Indian J Med Microbiol 2007; 25: 323-9.
Góth L, Nemeth H, Csziiros IM. Clinical study of the determination of serum catalase enzyme activity. Hung SciInstr 1984; 57: 7-12.
Goldstein S, Czapski G. Superoxide dismutase. In: Punchard NA, Kelly FJ (eds.). Free radicals: a practical approach. New York: Oxford University Press; 1996, p. 241-55.
Flohe L, Guenzler WA. Assays of glutathione peroxidase. Meths Enzymol 1984; 105: 114-26.
Czeczot HD, Scibior DM, Skrzycki M, Podsiad M. Glutathione and GSH-dependent enzymes in patients with liver cirrhosis and hepatocellular carcinoma. Acta Biochim Pol 2006; 53: 237-41.
Ismail NA, Okasha SH, Dhawan A, Rahman AMO, Shaker OG, Sadik NAH. Glutathione peroxidase, superoxide dismutase and catalase activities in hepatic tissue from children with glycogen storage disease. Archs Med Sci 2009; 5: 86-90.
Masalkar PD, Abhang SA. Oxidative stress and antioxidant status in patients with alcoholic liver disease. Clin Chim Acta 2005; 355: 61-5.
Cankurtaran M, Kav T, Yavuz B, Shorbagi A, Halil M, Coskun T, Arslan S. Serum vitamin-E levels and its relation to clinical features in nonalcoholic fatty liver disease with elevated ALT levels. Acta Gastroenterol Belg 2006; 69: 5-11.
Sies H, Stahl W. Vitamins E and C, beta-carotene, and other carotenoids as antioxidants. Am J ClinNutr 1995; 62: 1315-21.
Castelli A, Martorana GE, FrascaAM, Meucci E. Colorimetric determination of plasma vitamin C: comparison between 2,4- dinitrophenylhydrazine and phosphotungstic acid methods. Acta Vitaminol Enzymol 1981; 3: 103-10.
Kall MA, Andersen C. Improved method for simultaneous determination of ascorbic acid and dehydroascorbic acid, isoascorbic acid and dehydroisoascorbic acid in food and biological samples. J Chromatogr B Biomed SciAppl 1999; 730: 101-11.
Iwata T, Yamaguchi M, Hara S, Nakamura M, Ohkura Y. Determination of total ascorbic acid in human serum by highperformance liquid chromatography with fluorescence detection. J Chromatogr 1985; 344: 351-5.
Dhariwal KR, Washko PW, Levine M. Determination of dehydroascorbic acid using high-performance liquid chromatography with coulometric electrochemical detection. Annal Biochem 1990; 189: 18-23.
Di Sario A, Candelaresi C, Omenetti A, Benedetti A. Vitamin E in chronic liver diseases and liver fibrosis. Vitam Horm 2007; 76: 551-73.
Burton GW, Ingold KU. Autooxidation of biological molecules.The antioxidant activity of vitamin E and related chain-breaking phenolic antioxidants in vitro. J Am Chem Soc 1981; 103: 6472-7.
Pascoe GA, Olafsdottir K, Reed DJ. Vitamin E protection against chemical induced cell injury, maintenance of cellular protein thiols as a cytoprotective mechanism. Arch Biochem- Biophys 1987; 256: 150-8.
Catignani G, Bieri J. Simultaneous determination of retinol and a-tocopherol in serum or plasma by liquid chromatography. Clin Chem 1983; 29: 708-12.
Biesalki H, Greiff H, Brodda K, Hafner G, Bassler KH. Rapid determination of vitamin A (retinol) and vitamin E (a-tocopherol) in human serum by isocratic adsorption HPLC. Int J Vit- Nutr Res 1986; 56: 319-27.
Lehmann J, Martin H. Improved direct determinations of alpha and gamma tocopherols in plasma and platelets by liquid chromatography with fluorescence detection. Clin Chem 1982; 28: 1784-7.
Olson RE, Rudney H. Biosynthesis of ubiquinone. Vitam- Horm 1983; 40: 1-43.
Yamamoto Y, Yamashita S, Fujisawa A, Kokura S, Yoshikawa T. Oxidative stress in patients with hepatitis, cir rhosis, and hepatoma evaluated by plasma antioxidants. Biochem Biophys Res Commun 1998; 247: 166-70.
Ogino K, Wang DH. Biomarkers of oxidative/nitrosative stress: an approach to disease prevention. Acta Med Okayama 2007; 61: 181-9.
Terjung B, Lemnitzer I, Dumoulin FL, Effenberger W, Brackmann HH, Sauerbruch T, Spengler U. Bleeding complications after percutaneous liver biopsy. An analysis of risk factors. Digestion 2003; 67: 138-45.
Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A. Biomarkers of oxidative damage in human disease. ClinChem 2006; 52: 601-23.
Dotan Y, Lichtenberg D, Pinchuk I. Lipid peroxidation cannot be used as a universal criterion of oxidative stress. Prog Lipid Res 2004; 43: 200-27.
Sahab ZJ, Semaan SM, Sang QX. Methodology and applications of disease biomarker identification in human serum. Biomark Insights 2007; 2: 21-43.
Mueller M, Kratzer W, Oeztuerk S, Wilhelm M, Mason RA, Mao R, Haenle MM. Percutaneous ultrasonographically guided liver punctures: an analysis of 1961 patients over a period of ten years. BMC Gastroenterol 2012; 12: 173.
Zhu R, Wang Y, Zhang L, Guo Q. Oxidative stress and liver disease. Hepatol Res 2012; 42: 741-9.
Cichoz-Lach H, Michalak A. Oxidative stress as a crucial factor in liver diseases. World J Gastroenterol 2014; 20: 8082-91.
Brack M, Brack O, Ménézo Y, BonnefontRousselot D, Dreyfus G, Chapman MJ, Kontush A. Distinct profiles of systemic biomarkers of oxidative stress in chronic human pathologies: Cardiovascular, psychiatric, neurodegenerative, rheumatic, infectious, neoplasmic and endocrinological diseases. Advances in Bioscience & Biotechnology 2013; 4: 331-9.
Kökoglu OF, Uçmak H, Kurutas EB, Kuzhan N, Toprak R, Çetinkaya A, Kantarçeken B, et al. Oxidative stress biomarkers in urine of patients with hepatitis B and C. Balkan Med J 2012; 29: 39-42.
Rigamonti C, Mottaran E, Reale E, Rolla R, Cipriani V, Capelli F, Boldorini R, et al. Moderate alcohol consumption increases oxidative stress in patients with chronic hepatitis C. Hepatology 2003; 38: 42-9.
Demirdag K, Yilmaz S, Ozdarendeli A, Ozden M, Kalkan A, Kilic SS. Levels of plasma malondialdehyde and erythrocyte antioxidant enzyme activities in patients with chronic hepatitis B. Hepatogastroenterology 2003; 50: 766-70.
Vuppalanchi R, Juluri R, Bell LN, Ghabril M, Kamendulis L, Klaunig JE, Saxena R, et al. Oxidative stress in chronic liver disease: relationship between peripheral and hepatic measurements. Am J Med Sci 2011; 342: 314-7.
Ozenirler S, Erkan G, Gülbahar O, Bostankolu O, Ozbas- Demirel O, Bilgihan A, Akyol G. Serum levels of advanced, oxidation protein products, malonyldialdehyde, and total radical trapping antioxidant parameter in patients with chronic hepatitis C. Turk J Gastroenterol 2011; 22: 47-53.
Tanaka S, Miyanishi K, Kobune M, Kawano Y, Hoki T, Kubo T, Hayashi T, et al. Increased hepatic oxidative DNA damage in patients with nonalcoholic steatohepatitis who develop hepatocellular carcinoma. J Gastroenterol 2013; 48: 1249-58.
Arauz J, Moreno MG, Cortés-Reynosa P, Salazar EP, Muriel P. Coffee attenuates fibrosis by decreasing the expression of TGF-β and CTGF in a murine model of liver damage. J ApplToxicol 2013; 33: 970-9.
Arauz J, Rivera-Espinoza Y, Shibayama M, Favari L, Flores-Beltrán RE, Muriel P. Nicotinic acid prevents experimental liver fibrosis by attenuating the prooxidant process. IntImmunopharmacol 2015; 28: 244-51.
Ji HF, Sun Y, Shen L. Effect of vitamin E supplementation on aminotransferase levels in patients with NAFLD, NASH, and CHC: results from a meta-analysis. Nutrition 2014; 30: 986-91.
Bunchorntavakul C, Wootthananont T, Atsawarungruangkit A. Effects of vitamin E on chronic hepatitis C genotype 3: a randomized, double-blind, placebo-controlled study. J Med Assoc Thai 2014; 97: 31-40.