2012, Number 3
<< Back Next >>
MEDICC Review 2012; 14 (3)
Possible predictors of poor angiogenesis after hematopoietic stem cell autograft for lower limb ischemia
Gómez RA, Fernández JD, Cabrera M, Marrero I, Ramírez N, Álvarez I
Language: English
References: 56
Page: 31-36
PDF size: 166.07 Kb.
ABSTRACT
Introduction: The therapeutic potential of adult stem cells in coronary and peripheral arterial diseases has been proposed in recent years. However, factors possibly predictive of unfavorable angiogenic results have not been clearly identified as yet.
Objetive: Identify candidate predictors of poor angiogenesis, as indicated by need for amputation, after autologous hematopoietic stem cell transplantation for chronic lower limb ischemia.
Methods: A retrospective analytical case-series study was carried out to detect factors possibly associated with hematopoietic stem cell autograft failure due to low angiogenic potential. The study universe was composed of 47 patients (19 women, 28 men) with critical lower limb ischemia in Fontaine stages IIb, III and IV, who received autologous stem cell transplantation at the "Dr Gustavo Aldereguía Lima" University General Hospital in Cienfuegos, Cuba, from January 2007 through December 2010. Variables studied were sex, age, medical history (high blood pressure, ischemic cardiomyopathy, diabetes mellitus and chronic renal insufficiency), Fontaine ischemia stage, intermittent claudication, pain score on a 1–10 scale, ankle-brachial pressure index in the affected extremity, presence of ulcers, and smoking. Laboratory variables included: blood concentrations of hemoglobin, glucose, creatinine, liver enzymes, cholesterol, triglycerides and LDH; as well as leukocyte and platelet counts, stem cell viability, prothrombin time and erythrocyte sedimentation rate. The main response variable was amputation, an indicator of poor angiogenesis. Using logistic regression, a prognostic score of 1 to 4 was developed for each risk factor and scores added to create a risk prediction scale. Predicted risk for amputation and observed amputation rates were compared for patients in three risk groups: low, 0–4; medium, 5–8; and high, 9–12.
Results: Factors identified as possibly predictive of poor angiogenesis were: final leukocyte count ‹ 20 x 10
9/L after mobilization with granulocyte colony stimulating factor; age ≥ 60 years; pain scale score of 10; glycemia of › 6 mmol/L; and triglycerides of › 1.8 mmol/L. Patients who scored low on predicted amputation risk scale were spared amputation in 90.9% (10/11) of cases, versus 16.7% (2/12) in patients scoring high.
Conclusions: Five possible prognostic factors for low angiogenic potential in stem cell autotransplantation were identified and a preliminary scale established to predict in which patients autotransplantation would be more likely to be successful.
REFERENCES
Hernández-Ramírez P, Alfonso-Simón A, Aparicio- Suárez JL, Artaza-Sanz H, Baganet-Cobas A, Blanco-Díaz Á, et al. Experiencia cubana con el uso terapéutico de células madre adultas. Rev Cubana Hematol Hemoter. 2011;27(1):139–63. Spanish.
Liu Q, Chen Z, Terry T, McNatt JM, Willerson JT, Zoldhelyi P. Intra-arterial transplantation of adult bone marrow cells restores blood fl ow and regenerates skeletal muscle in ischemic limbs. Vasc Endovascular Surgery. 2009 Oct– Nov;43(5):433–43.
Kim MH, Zhang HZ, Kim SW. Combined growth factors enhanced angiogenic potential of cord blood-derived mononuclear cells transplanted to ischemic limbs. J Mol Cell Cardiol. 2011 Nov;51(5):702–12.
Lasala GP, Silva JA, Gardner PA, Minguell JJ. Combination stem cell therapy for the treatment of severe limb ischemia: safety and effi cacy. Angiology. 2010 Aug;61(6):551–6.
Franz RW, Shah KJ, Johnson JD, Pin RH, Parks AM, Hankins T, et al. Short- to mid-term results using autologous bone-marrow mononuclear cell implantation therapy as a limb salvage procedure in patients with severe peripheral arterial disease. Vasc Endovascular Surgery. 2011 Jul;45(5):398–406.
Hernández P. Medicina regenerativa II. Aplicaciones, realidad y perspectivas de la terapia celular [Internet]. Rev Cubana Hematol Inmunol Hemoter. 2006 [cited 2011 Sep 19];(1). Available from: http://scielo.sld.cu/scielo.php?script=sci _arttext&pid= S08642892006000100002&lng=e s&nrm=iso. Spanish.
Hernández P, Dorticós E. Medicina regenerativa. Células madre embrionarias y adultas [Internet]. Rev Cubana Hematol Inmunol Hemoter. 2004 [cited 2011 Sep 9]. Available from: http://scielo.sld .cu/scielo.php?script=sci_arttext&pid= S0864028 92004000300001&lng=es&nrm=iso. Spanish.
Mohler ER 3rd. Peripheral Arterial Disease. Identifi cation and implications. Arch Intern Med. 2003 Oct 27;163(19):2306–14.
Hasabe H, Osada M, Kodama Y, Fujioka D, Sano K, Nakamura T, et al. [Therapeutic angiogenesis by autologous transplantation of bone marrow cells in a patient with progressive limb ischemia due to arteriosclerosis obliterans: a case report]. J Cardiol. 2004 Apr;43(4):179–83. Japanese.
Kolvenbach R, Kreissig C, Ludwig E, Cagiannos C. Stem cell use in critical limb ischemia. J Cardiovasc Surg (Torino). 2007 Feb;48(1):39–44.
Hernández P, Artaza H, Díaz AJ, Cortina LD, Lam RM, Pol N, et al. Autotrasplante de células madre adultas en miembros inferiores con isquemia crítica. Rev Española Investig Quirúrgicas. 2007;4:204–11. Spanish.
Korymasov E, Tyumina O, Rossiev V, Kazantscev A, Volchkov S, Toropovskiy A. Randomized double blind placebo-controlled research of effi ciency of treatment patients with lower limb arteriosclerosis obliterans by autologous transplantation of bone marrow progenitor cell. 14th Annual International Society for Cellular Therapy, Meeting, Miami 2008. Cytotherapy. 2008;10(Suppl 1):abstract 236.
Skora J, Pupka A, Barc P, Szyber P, Polak W, Szyber P. [Complex gene-cell therapy in treatment of critical lower limbs ischemia]. Pol Merkur Lekarski. 2007 Feb;22(128):121–5. Polish.
Bhang SH, Cho SW, Lim JM, Kang JM, Lee TJ, Yang HS, et al. Locally delivered growth factor enhances the angiogenic effi cacy of adiposederived stromal cells transplanted to ischemic limbs. Stem Cells. 2009 Aug;27(8):1976–86.
Tachi Y, Fukui D, Wada Y, Koshikawa M, Shimodaira S, Ikeda U, et al. Changes in angiogenesis related factors in serum following autologous bone marrow cell implantation for severe limb ischemia. Expert Opin Biol Ther. 2008 Jun;8(6):705–12.
Rufaihah AJ, Huang NF, Jamé S, Lee JC, Nguyen HN, Byers B, et al. Endothelial cells derived from human iPSCS increase capillary density and improve perfusion in a mouse model of peripheral arterial disease. Arterioscler Thromb Vasc Biol. 2011 Nov;31(11):e72–9.
Lasala GP, Minguell JJ. Vascular disease and stem cell therapies. Br Med Bull. 2011 Jun;98:187–97.
Mason C, Dunnill P. A brief defi nition of regenerative medicine. Regen Med. 2008;3(1):1–5.
Hayden EC, Baker M. Virus-free pluripotency for human cells. Stem-cell advance could bring tailored treatments closer. Nature. 2009 Mar;458(7234):19.
Chih S, Macdonald PS, McCrohon JA, Ma D, Moore J, Feneley MP, et al. Granulocyte colony stimulating factor in chronic angina to stimulate neovascularisation: a placebo controlled crossover trial. Heart. 2012 Feb;98(4):282–90.
Meyer GP, Wollert KC, Lotz J, Steffens J, Lippolt P, Fichtner S, et al. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation. 2006 Mar 14;113(10):1287–94.
Schächinger V, Erbs S, Elsässer A, Haberbosch W, Hambrecht R, Hölschermann H, et al. Intracoronary bone marrow–derived progenitor cells in acute myocardial infarction. N Engl J Med. 2006 Sep 21;355(12):1210–21.
Amin AH, Abd Elmageed ZY, Nair D, Partyka MI, Kadowitz PJ, Belmadani S, et al. Modifi ed multipotent stromal cells with epidermal growth factor restore vasculogenesis and blood fl ow in ischemic hind-limb of type II diabetic mice. Lab Invest. 2010 Jul;90(7):985–96.
WHO. ICD-10 International Statistical Classifi cation of Diseases and Related Health Problems. 2010 Version [Internet]. Geneva: World Health Organization Library Cataloguing; 2010 [cited 2011 Oct 24]. Available from: http://www .who.int/classifi cations
Becker F. Exploration of arterial function with noninvasive technics. Results in chronic arterial occlusive disease of the lower limbs according to Leriche and Fontaine classifi cation. Int Angiol. 1985 Jul–Sep;4(3):311–22.
Kratz A, Lewandrowski KB. Normal reference laboratory values. N Engl J Med. 1998 Oct 8;339(15):1063–72.
Ebihara I, Sato T, Hirayama K, Seki M, Enami T, Kawahara H, et al. Blood fl ow analysis of the head and lower limbs by the laser Doppler blood fl owmeter during LDL apheresis. Ther Apher Dial. 2007 Oct;11(5):325–30.
Li TS, Kubo M, Ueda K, Murakami M, Ohshima M, Kobayashi T, et al. Identifi cation of risk factors related to poor angiogenic potency of bone marrow cells from different patients. Circulation. 2009 Sept 15;120(11 Suppl1): S255–61.
Reinisch A, Bartmann C, Rohde E, Schallmoser K, Bielic-Radisic V, Lanzer G, et al. Humanized system to propagate cord blood-derived multipotent mesenchymal stromal cells for clinical application. Regen Med. 2007 Jul;2(4):371–82.
Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, et al. Intracoronary autologous bonemarrow cell transfer after myocardial infarction: the BOOST randomized controlled clinical trial. Lancet. 2004 Jul 10–16;364(9429):141–8.
Li TS, Murakami M, Kobayashi T, Shirasawa B, Mikamo A, Hamano K. Long-term effi cacy and safety of the intramyocardial implantation of autologous bone marrow cells for the treatment of ischemic heart disease. J Thorac Cardiovasc Surg. 2007 Nov;134(5):1347–9.
Chandran S. What are the prospect of stem cell therapy for neurology? BMJ. 2008;337:a1934.
Li TS, Kubo M, Ueda K, Murakami M, Mikamo A, Hamano K. Impaired angiogenic potency of bone marrow cells from patients with advanced age, anemia, and renal failure. J Thorac Cardiovasc Surg. 2010 JFeb;139(2):459–65.
Schanzer A, Conte MS. Critical limb ischemia. Curr Treat Options Cardiovasc Med. 2010 Jun;12(3):214–29.
O’Neill TJ 4th, Wamhoff BR, Owens GK, Skalak TC. Mobilization of bone marrow–derived cells enhances the angiogenic response to hypoxia without transdifferentiation into endothelial cells. Circ Res. 2005 Nov 11;97(10):1027–35.
Fernandez N, McEnaney R, Marone LK, Rhee RY, Leers S, Makaroun M, et al. Predictors of failure and success of tibial interventions for critical limb ischemia. J Vasc Surg. 2010 Oct;52(4):834–42.
Kim SW, Kim H, Cho HJ, Lee JU, Levit R, Yoon YS. Human peripheral blood-derived CD31+ cells have robust angiogenic and vasculogenic properties and are effective for treating ischemic vascular disease. J Am Coll Cardiol. 2010 Aug 10;56(7):593–607.
Huang NF, Niiyama H, Peter C, De A, Natkunam Y, Fleissner F, et al. Embryonic stem cell– derived endothelial cells engraft into the ischemic hindlimb and restore perfusion. Arterioscler Thromb Vasc Biol. 2010 May;30(5):984–91.
Guiducci S, Porta F, Saccardi R, Guidi S, Ibba-Manneschi L, Manetti M, et al. Autologous mesenchymal stem cells foster revascularization of ischemic limbs in systemic sclerosis: A case report. Ann Intern Med. 2010 Nov 16;153(10):650–4.
Lian Q, Zhang Y, Zhang J, Zhang HK, Wu X, Zhang Y, et al. Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation. 2010 Mar 9;121(9):1113–23.
Kim MH, Zhang HZ, Kim SW. Combined growth factors enhanced angiogenic potential of cord blood-derived mononuclear cells transplanted to ischemic limbs. J Mol Cell Cardiol. 2011 Nov;51(5):702–12.
Tse HF, Lau CP. Therapeutic angiogenesis with bone marrow-derived stem cells. J Cardiovasc Pharmacol Ther. 2007 Jun;12(2):89–97.
Emerson JF, Emerson SS. Evaluation of a Standardized Procedure for Counting Microscopic Cells in Body Fluids. J Clin Lab Anal. 2005;19(6):267–75.
Santillán Benítez JG, Núñez Delira CN, Morales Ávila E, Mejía García E. Validación del método analítico del citómetro XE-2100 y comparación con el método convencional para el conteo de leucocitos en líquidos corporales. Rev Mex Patol Clin. 2009 Oct–Dec;56(4):278–82. Spanish.
McGinley M, Wong LL, McBride JH, Rodgerson DO. Comparison of various methods for the enumeration of blood cells in urine. J Clin Lab Anal. 1992;6(6):359–61.
Phelan MC, Lawler G. Cell counting. Curr Protoc Cytom. 1997 May; Appendix 3: Appendix 3A.
Li TS, Furutani A, Takahashi M, Ohshima M, Qin SL, Kobayashi T, et al. Impaired potency of bone marrow mononuclear cells for inducing therapeutic angiogenesis in obese diabetic rats. Am J Physiol Heart Circ Physiol. 2006 Apr;290(4):H1362–9.
Barcelos LS, Duplaa C, Kränkel N, Graiani G, Invernici G, Katare R, et al. Human CD133+ progenitor cells promote the healing of diabetic ischemic ulcers by paracrine stimulation of angiogenesis and activation of Wnt signaling. Circ Res. 2009 May 8;104(9):1095–1102.
Cubbon RM, Rajwani A, Wheatcroft SB. The impact of insulin resistance on endothelial function, progenitor cells and repair. Diab Vasc Dis Res. 2007 Jun;4(2):103–11.
Zhang D, Li Y, Zhu T, Zhang F, Yang Z, Miao D. Zinc supplementation results in improved therapeutic potential of bone marrow-derived mesenchymal stromal cells in a mouse ischemic limb model. Cytotherapy. 2011 Feb;13(2):156–64.
Song HJ, Lan BS, Cheng B, Zhang KF, Yan HW, Wang WZ, et al. Peripheral blood stem cell transplantation for ischemic femoral head necrosis. Transplant Proc. 2010 Jun;42(5):1862–4.
Rajantie I, Ilmonen M, Alminaite A, Ozerdem U, Alitalo K, Salven P. Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood. 2004 Oct 1;104(7):2084–6.
Kim MS, Lee CS, Hur J, Cho HJ, Jun SI, Kim TY, et al. Priming with angiopoietin-1 augments the vasculogenic potential of the peripheral blood stem cells mobilized with granulocyte colony-stimulating factor through a novel Tie2/Ets-1 pathway. Circulation. 2009 Dec1;120(22):2240–50.
Werner N, Nikening G. Infl uence of cardiovascular risk factors on endothelial progenitor cells: limitations for therapy? Arterioscler Thromb Vasc Biol. 2006 Feb;26(2):257–66.
Mauer K, Exaire JE, Stoner JA, Guthery LD, Montgomery PS, Gardner AW. Reduced high-density lipoprotein level is linked to worse ankle brachial index and peak oxygen uptake in postmenopausal women with peripheral arterial disease. Angiology. 2010 Oct;61(7):698–704.
Amann B, Ludemann C, Ratei R, Schmidt-Lucke JA. [Autologous bone-marrow stem-cell transplantation for induction of arteriogenesis for limb salvage in critical limb ischaemia]. Zentralbl Chir. 2009 Aug;134(4):298–304. German.