2016, Number 1
<< Back Next >>
Rev Mex Ing Biomed 2016; 37 (1)
EMG signal acquisition system for muscle fatigue detection
Correa-Figueroa JL; Morales-Sánchez E; Huerta-Ruelas JA; González-Barbosa JJ; Cárdenas-Pérez CR
Language: Spanish
References: 23
Page: 17-27
PDF size: 2483.64 Kb.
ABSTRACT
This paper presents the development of a system for acquiring and processing of surface myoelectric signals or
SEMG. The proposed system acquires signals SEMG skin surface using AgCl surface electrodes. The system has
an amplification step and hardware filtering to streamline the processing time. Developed software for processing
the Fourier transform SEMG amplified and filtered signal. Unlike other systems for acquisition of biological signals,
which are developed for therapy or rehabilitation, this system is intended to be used for the control of robotic arms,
so the software performs the measurement of fatigue using parameters like bleed average frequency and instantaneous
power spectral density of the signal SEMG.
REFERENCES
I. A. Cifuentes, “Diseño y construcción de un sistema para la detección de señales electromiográficas,” Undergraduate Thesis, Universidad Autónoma de Yucatán, 2010.
S. Bela, R. Szabo, S. Ravi, U. Alessio, and K. Sai, “A Data Acquisition and Signal Processing System for EMG and Acceleration Signals,” IEEE Proceedings, 1990.
Y. Kim, S. Kim, H. Shim, S. Lee, and K. Kim, “A method for gait rehabilitation training using EMG fatigue analysis,” 2013 Int. Conf. ICT Converg., pp. 52- 55, Oct. 2013.
V. Siemionow, V. Sahgal, and G. H. Yue, “Single-Trial EEG-EMG coherence analysis reveals muscle fatigue-related progressive alterations in corticomuscular coupling,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 18, no. 2, pp. 97-106, Apr. 2010.
P. Shenoy, K. J. Miller, B. Crawford, and R. N. Rao, “Online electromyographic control of a robotic prosthesis,” IEEE Trans. Biomed. Eng., vol. 55, no. 3, pp. 1128-35, Mar. 2008.
E. Mangieri, A. Ahmadi, K. Maharatna, S. A. Ahmad, and P. H. Chappell, “A Novel Analogue Circuit for Controlling Prosthetic Hands,” IEEE, pp. 81-84, 2008.
D. Peleg, E. Braiman, E. Yom-Tov, and G. F. Inbar, “Classification of finger activation for use in a robotic prosthesis arm,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 10, no. 4, pp. 290-3, Dec. 2002.
P. Kutilek, J. Hybl, J. Kauler, and S. Viteckova, “Prosthetic 6-DOF Arm Controlled by EMG Signals and Multi-Sensor System,” Czech Technical University in Prague, Faculty of Biomedical Engineering, 2010.
P. K. Artemiadis and K. J. Kyriakopoulos, “An EMG-based robot control scheme robust to time-varying EMG signal features,” IEEE Trans. Inf. Technol. Biomed., vol. 14, no. 3, pp. 582-8, May 2010.
C. Assad, M. Wolf, A. Stoica, and A. J. P. L. Biosleeve, “BioSleeve: a Natural EMG-Based Interface for HRI,” IEEE HRI Proceedings pp. 69-70, 2013.
P. K. Artemiadis and K. J. Kyriakopoulos, “EMG-Based Control of a Robot Arm Using Low-Dimensional Embeddings,” IEEE Transactions On Robotics, vol. 26, no. 2, pp. 393-398, 2010.
T. Forbes, “Mouse HCI Through Combined EMG and IMU,” Open Access Master’s Theses , University of Rhode Island, 2013.
M. a C. Garcia, J. M. Y. Catunda, T. Lemos, L. F. Oliveira, L. a Imbiriba, and M. N. Souza, “An alternative approach in muscle fatigue evaluation from the surface EMG signal,” Conf. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Conf., vol. 2010, pp. 2419-22, Jan. 2010.
E. Koutsos and P. Georgiou, “An analogue instantaneous median frequency tracker for EMG fatigue monitoring,” 2014 IEEE Int. Symp. Circuits Syst., pp. 1388-1391, Jun. 2014.
J. M. Fernández, R. C. Acevedo, And C. B. Tabernig, “Influencia de la fatiga muscular en la señal electromiográfica de músculos estimulados eléctricamente,” Revista de la Escuela de Ingeniería de Antioquia, pp. 111-119, 2007.
L. Estrada, A. Torres, J. Garcia- Casado, G. Prats-Boluda, and R. Jane, “Characterization of laplacian surface electromyographic signals during isometric contraction in biceps brachii,” Conf. Proc. IEEE Eng. Med. Biol. Soc., vol. 2013, pp. 535-8, Jan. 2013.
M. Knaflitz and P. Bonato, “Timefrequency methods applied to muscle fatigue assessment during dynamic contractions,” J. Electromyogr. Kinesiol., vol. 9, no. 5, pp. 337-350, Oct. 1999.
A. Searle and L. Kirkup, “A direct comparison of wet, dry and insulating bioelectric recording electrodes,” Physiol. Meas., vol. 21, no. 2, pp. 271-83, 2000.
D. a Gabriel, “Effects of monopolar and bipolar electrode configurations on surface EMG spike analysis,” Med. Eng. Phys., vol. 33, no. 9, pp. 1079-85, Nov. 2011.
P. Konrad, The ABC of EMG, Book, 1.4 ed. Scottsdale, Arizona, Noraxon USA INC., 2006.
A. Phinyomark, S. Thongpanja, and H. Hu, “The Usefulness of Mean and Median Frequencies in Electromyography Analysis,” Open access chapter, Computational Intelligence in Electromyography Analysis - A Perspective on Current Applications and Future Challenges, INTECH 2012.
Y. Hotta and K. Ito, “Detection of EMG-based muscle fatigue during cyclic dynamic contraction using a monopolar configuration,” Conf. Proc. IEEE Eng. Med. Biol. Soc., vol. 2013, pp. 2140-3, Jan. 2013.
N. C. Chesler and W. K. Durfee, “Surface EMG as a fatigue indicator during FES-induced isometric muscle contractions,” J. Electromyogr. Kinesiol., vol. 7, no. 1, pp. 27-37, Mar. 1997.