2003, Number 3
<< Back
Cir Cir 2003; 71 (3)
Innate immunity, Toll receptor and sepsis
Carrillo-Esper R
Language: Spanish
References: 89
Page: 252-258
PDF size: 109.35 Kb.
ABSTRACT
The innate immune response is the first line of defense against
infection. Toll-like receptors (TLRs) recognize bacterial
lypopolysaccharide and other pathogen-associated molecular
patterns (PAMPs). Intracellular signals initiated by interaction
between Toll receptors and specific PAPMs results in inflammatory
response. Sepsis and septic shock are the result of an exaggerated
inflammatory systemic response induced by innate immune dysregulation.
REFERENCES
Society of Critical Care Medicine Consensus Conference Committee. American Conference: definitions for sepsis and organ failure and guidelines of the use of innovative therapies in sepsis. Crit Care Med 1992;20:864-874.
Bone RC. The sepsis syndrome: definition and general approach to management. Clin Chest Med 1996;17:75-82.
3 Abraham E, Matthay MA, Dinarello CA, et al. Consensus conference definitions for sepsis, septic shock, acute lung injury, and acute respiratory distress syndrome: time for a reevaluation. Crit Care Med 2000;28:232-235.
Janeway CA Jr. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today 1992;13:11-16.
Medzhitov R, Janeway C Jr. Innate immunity. N Engl J Med 2000;343:338-344.
Fearon DT, Locksley RM. The instructive role of innate immunity in the acquired immune response. Science 1996;272:50-53.
Beutler B, Poltorak A. Sepsis and evolution of the innate immune response. Crit Care Med 2000;29:S2-S7.
Janeway JCA, Medzhitov R. Introduction: the role of innate immunity in the adaptive innate response. Semin Immunol 1998;10:349-350.
Lien E, Ingalls RR. Toll-like receptors. Crit Care Med 2002;30:S1-S11.
Anderson KV, Jurgens G, Nusslein-Volhard C. Establishment of dorsal-ventral polarity in the Drosophila embryo: genetic studies on the role of the Toll gene product. Cell 1985;42:791-798.
Anderson KV, Bokla L, Nusslein-Volhard C. Establishment of dorsal-ventral polarity in the Drosophila embryo: the induction of polarity by the Toll gene product. Cell 1985;42:791-798.
Lemaitre B, Nicolas E, Michaut L, et al. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996; 86:973-983.
Tauszig S, Jouanguy E, Hoffmann JUA, et al. Toll-related receptors and the control of antimicrobial peptide expression in Drosophila. Proc Natl Acad Sci USA 2000;97:10520-10525.
Williams MJ, Rodríguez A, Kimbrell DA, et al. The 18-wheeler mutation reveals complex antibacterial gene regulation in Drosophila host defense. Embo J 1997;16:6120-6130.
Gay NJ, Keith FJ. Drosophila Toll and IL-1 receptor. Nature 1992:351:355-356.
DeLotto Y, DeLotto R. Proteolytic processing of the Drosophila Spatzle protein by easter generates a dimeric NGF-like molecule with ventralising activity. Mech Dev 1998;72:141-148.
Edwards DN, Towb P, Wassermann SA. An activity-dependent network of interactions links the Rel protein dorsal with its cytoplasmic regulators. Development 1997;124:3855-3864.
LeMosy EK, Hong CC, Hashimoto C. Signal transduction by a protease cascade. Trends Cell Biol 1999;9:102-107.
Geisler R, Bergmann A, Hiromi Y, et al. Cactus, a gene involved in dorsoventral pattern formation of Drosophila, is related to the 1 kappa B gene family of vertebrates. Cell 1992; 71:613-621.
Kidd S. Characterization of the Drosophila cactus locus and analysis of interactions between cactus and dorsal proteins. Cell 1992;71:623-635.
Taguchi T, Mitchman JL, Dower SK, et al. Chromosomal localization of TIL, a gene enconding a protein related to the Drosophila transmembrance receptor Toll, to human chromosome 4p14. Genomics 1996;32:486-488.
Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997;388:394-397.
Rock FL, Hardiman G, Timans JC, et al. A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci USA 1998;95:588-593.
Takeuchi O, Kawai T, Sanjo H, et al. TLR6: a novel member of an expanding Toll-like receptor family. Gene 1999;231:59-65.
Muzio M, Polentarutti N, Bosisio D, et al. Toll-like receptor family and signalling pathway. Biochem Soc Trans 2000;28:563-566.
Brightbill HD, Libraty DH, Krutzik SR, et al. Host defense mechanisms triggered by microbial lipoproteins through Toll-like receptors. Science 1999;285:732-736.
Schwander R, Dziarski R, Wesche H, et al. Peptidoglycan and lipoteichoic acid induced cell activation is mediated by Toll-like receptor 2. J Biol Chem 1999;274:17406-17409.
Alexopoulou L, Holt AC, Medzhitov R, et al. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 2001;413:732-738.
Hayashi F, Smith KD, Ozinsky A, et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001;410:1099-1103.
Takeuchi O, Hosmino K, Kawai T, et al. Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components. Immunity 1999;11:443-451.
Bauer S, Kirschning CJ, Hacker H, et al. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci USA 2001;98:9237-9242.
Wright SD, Ramos RA, Tobias PS, et al. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 1990;249:1431-1433.
Haziot AA, Chen S, Ferrero E, et al. The monocyte differentiation antigen, CD14, is anchored to the cell membrane by a phosphatidylinositol linkage. J Immunol 1988;141:547-552.
Ziegler-Heitbrock HW, Ulevitch RJ. CD14: cell surface receptor and differentiation marker. Immunol Today 1993;14:121-125.
Frey EA, Miller DS, Jahr TG, et al. Soluble CD14 participates in the response of cells to lipopolysaccharide. J Exp Med 1992;196:1665-1671.
Wright SD, Levin SM, Jong MT, et al. CR3 (CD11b/CD18) expresses one binding site for Arg-Gly-Asp-containing peptides and a second site for bacterial lipopolysaccharide. J Exp Med 1989; 169:175-183.
Ingalls RR, Golenbock DT. CD11c/CD18, a transmembrane signaling receptor for lipopolysaccharide. J Exp Med 1995;181:1473-1479.
Perera PY, Mayadas TN, Takeuchi O, et al. CD11b/CD18 acts in concert with CD14 and toll-like receptor (TLR) 4 to elicit full lipopolysaccharide and taxol-inducible gene expression. J Immunol 2001;166:574-581.
Shimazu R, Akashi S, Ogata H, et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 1999;189:1777-1782.
Schromm AB, Lien E, Henneke P, et al. Molecular genetic analysis of an endotoxin nonresponder mutant cell line: a point mutation in a conserved region of MD-2 abolishes endotoxin induced signaling. J Exp Med 2001;194:79-88.
Hotchkiss R, Karl IE. The pathophysiology and treatment of sepsis. New Engl J Med 2003;348:138-150.
Marik PE, Varon J. Sepsis: state of the art. Disease-a-Month 2001;47:463-530.
Oberholzer A, Oberholzer C, Moldawer LL. Cytokine signaling-regulation of the immune response in normal and critically ill states. Crit Care Med 2000;28(Suppl):N3-N12.
Modlin RL, Brightbill HD, Godowski PJ. The Toll of innate immunity on microbial pathogens. N Engl J Med 1999;340:1834-1835.
Vasselon T, Detmers PA. Toll receptors: a central element in innate immune responses. Infect Immun 2002;70:1033-1041.
Underhill DM, Ozinsky A. Toll-like receptors: key mediators of microbe detection. Curr Opin Immunol 2002;14:103-110.
Oberholzer A, Oberholzer C, Moldawer LL. Sepsis syndromes: understanding the role of innate and acquired immunity. Shock 2001;16:83-96.
Chuang T, Ulevitch RJ. Identification of hTLR10: a novel human Toll-like receptor preferentially expressed in immune cells. Biochim Biophys Acta 2001:1518:157-161.
Kaisho Tsuneyasu, Akira S. Toll-like receptors and their signaling mechanism in innate immunity. Acta Odontol Scand 2001;59:124-130.
Aliprantis AO, Yang R-B, et al. The apoptotic signaling pathway activated by Toll-like receptor 2. EMBO 2000;3:3325-3336.
Hotchkiss RS, Swanson PE, Freeman BD, et al. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit Care Med 1999;27:1230-1251.
Hotchkiss RS, Tinsley KW, Swanson PE, et al. Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans. J Immunol 2001;166:6952-6963.
Seki E, Tsutsui H, Nakano H, et al. Lipopolysaccharide-induced IL-18 secretion from murine Kupffer cells independently of myeloid differentiation facgtor 88 that is critically involved in induction of production of IL-12 and IL-1 beta. J Immunol 2001;166:2651-2657.
Arbibe L, Mira JP, Teusch N, et al. Toll-like receptor 2-mediated NF-kappa B activation requires a Rac1-dependent pathway. Nat Immunol 2000;1:533-540.
Papavassiliou AG. Transcription factors. N Engl J Med 1995;332:45-47.
Kuno K, Matsushima K. The IL-1 receptor signaling pathway. Leukoc Biol 1994;56:242-246.
Carrillo ER. Modulación genética de la respuesta inflamatoria sistémica en sepsis. Rev Asoc Mex Med Crit Ter Int 2001;15:92-95.
Baeuerle P, Baltimore D. NF-kB: ten years after. Cell 1996;87:13-20.
Baeuerle P, Baltimore D. IkB: a specific inhibitor of the NF-kB transcription factor. Science 1998:540-545.
Kopp EB, Ghosh S. NF-kB and Rel proteins in innate immunity. Adv Immunol 1995; 58:1-27
Bohrer H, Qiu F, Zimmermann T. Role of NF-kB in the mortality of sepsis. J Clin Invest 1997;100:972-985.
Stuber F. Effects of genomic polymorphisms on the course of sepsis: is there a concept for gene therapy? Am Soc Nephrol 2001;(Suppl 17):S60-S64.12.
Carrillo ER, Núñez FN. Systemic inflammatory response syndrome: new concepts. Gac Med Mex 2001;137:127-134.
Haziot A, Ferrero E, Kontgen F, et al. Resistance to endotoxin shock and reduced dissemination of Gram-negative bacteria in CD14-deficient mice. Immunity 1996;407:4.
Haziot A, Ferrero E, Lin XY, et al. CD-14 deficient mice are exquisitely insensitive to the effects of LPS. Prog Clin Biol Res 1995;392:349.
Haziot A, Lin XY, Zhang F, et al. The induction of acute phase proteins by lipopolysaccharide uses a novel pathway that is CD14-independent. J Immunol 1998;160:2570.
Ingalls RR, Arnaout MA, Golenbock DT. Outside-in signaling by lipopolysaccharide through a tailless integrin. J Immunol 1997;159:433.
Lorenz E, Mira JP, Cornish KL, et al. A novel polymorphism in the Toll-like receptor 2 gene and its potential association with staphylococcal infection. Infect Immun 2000;68:6398-6401.
Qureshi ST, Lariviere L, Leveque G, et al. Entodotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J Exp Med 1999;189:615-625.
Greisman SE, Young EJ, Carozza FA Jr. Mechanisms of endotoxin tolerance: V. Specificity of the early and late phases of pyrogenic tolerance. J Immunol 1969;103:1123-1236.
Milner KC. Patterns of endotoxin tolerance. J Infect Dis 1973;128(Suppl): 237-245.
Greisman SE, Hornick RB. Mechanisms of endotoxin tolerance with special reference to man. J Infect Dis 1973;128(Suppl):265-276.
West MA, Heagy W, Nieman K, et al. Signal transduction alterations in macrophage endotoxin tolerance: abnormal protein kinase C-zeta activation. J Endo Res 2000;6:134.
Nomura F, Akashi S, Sakao Y, et al. Cutting edge: endotoxin tolerance in luse peritoneal macrophages correlates with down-regulation of surface Toll-like receptor 4 expression. J Immunol 2000;164:3476-3479.
Yoza B, LaRue K, McCall C. Molecular mechanisms responsible for endotoxin tolerance. Prog Clin Biol Res 1998;397:209-215.
Cook JA. Molecular basis of endotoxin tolerance. Ann N Y Acad Sci 1998;851:426-428.
Seatter SC, Bennet T, Li MH, et al. Macrophage endotoxin tolerance: tumor necrosis factor and interleukin-1 regulation by lipopolysaccharide pretreatment. Arch Surg 1994;129:1263-1270.
Kraatz J, Clair L, Rodríguez JL, et al. Macrophage TNF secretion in endotoxin tolerance: role of SAPK, p38, and MAPK. J Surg Res 1999;83:158-164.
Sun S-C, Ganchi PA, Ballard DW, et al. NF-kB controls expression of inhibitor IkBa: evidence for an inducible autoregulatory pathway. Science 1993;259:1912-1915.
Cain BS, Tung TC. Endotoxin cross tolerance: another inflammatory preconditioning stimulus? Crit Care Med 2000;28:2164-2165.
Shahbazian LM, Jeevanandam M, Petersen SR. Release of proinflammatory cytokines by mitogen-stimulated peripheral blood mononuclear cells from critically ill multiple-trauma victims. Metabolism 1999;48:1397-1401.
Flach R, Majetschak M, Heukamp T, et al. Relation of ex vivo stimulated blood cytokine synthesis to post-traumatic sepsis. Cytokine 1999;11:173-178.
Haupt W, Fritzsche H, Hohenberger W, et al. Selective cytokine release induced by serum and separated plasma from septic patients. Eur J Surg 1996;162:769-776.
Majetschak M, Flach R, Heukamp T, et al. Regulation of whole blood tumor necrosis factor production upon endotoxin stimulation after severe blunt trauma. J Trauma 1997;43:880-887.
Fabian TC, Croce MA, Fabian MJ, et al. Reduced tumor necrosis factor production in endotoxin-spiked whole blood after trauma: experimental results and clinical correlation. Surgery 1995;118:63-72.
Keel M, Schregenberger N, Steckholzer U, et al. Endotoxin tolerance after severe injury and its regulatory mechanisms. J Trauma 1996;41:430-438.
Ziegler-Heribrock HWL. Molecular mechanism in tolerance to lipopolysaccharide. J Inflamm 1995;45:13-26.
Kohler NG, Joly A. The involvement of an LPS inducible I kappa B kinase in endotoxin tolerance. Biochem Biophys Res Commun 1997;232:602-607.
Shames BD, Meldrum DR, Selzman CH, et al. Increased levels of myocardial I kappa B-alpha protein promote tolerance to endotoxin. Am J Physiol 1998;275:H1084-H1091.