2016, Number 1
<< Back Next >>
Investigación en Discapacidad 2016; 5 (1)
Molecular diagnosis of neuromuscular diseases at the Instituto Nacional de Rehabilitación (National Institute of Rehabilitation), current situation and prospects
Luna-Angulo AB, Suárez-Sánchez R, Cortés-Callejas H, Ruano-Calderón L, Escobar-Cedillo RE, Tapia-Guerrero Y, Márquez-Quiróz L, Jano-Ito J, Cedeño-Garciadueñas AL, Leyva-García N, Hernández-Hernández O, Sánchez-Chapul L, Magaña-Aguirre JJ
Language: Spanish
References: 69
Page: 9-26
PDF size: 371.73 Kb.
ABSTRACT
In Mexico, around six million people have some kind of disability, of which neuromuscular diseases remain one of the most common causes of inability and death. Neuromuscular disorders are rare conditions that affect the muscles, the neuromuscular junction, the peripheral motor nerves and the motor neurons. Their clinical and genetic variability impact in an effective diagnosis; therefore, many cases are identified belatedly or not diagnosed at all, due to lack economic resources or the absence of specialized study centers for neuromuscular diseases. In this article, we offer a general description of the most frequent neuromuscular diseases in our population, as well as the results obtained following the implementation of molecular diagnosis three years ago in the National Rehabilitation Institute (INR). We confirmed the molecular diagnosis in 636 patients, who received the benefit of a more appropriate treatment, specific to each disease, and genetic counseling, psychological monitoring and an effective social inclusion program. In the final part of this manuscript, we discuss the advances and perspectives of the development of molecular diagnosis of other neuromuscular diseases in INR.
REFERENCES
INEGI. Censo de Población y Vivienda 2010, Cuestionario ampliado. Estados Unidos Mexicanos/Población con discapacidad.
Dubowitz V. Muscle disorders in childhood. 2nd ed. Vol. X. London; Philadelphia: Saunders; 1995. 540 p.
Kaplan, JC, Hamroun D. The 2015 version of the gene table of monogenic neuromuscular disorders (nuclear genome). Neuromuscul Disord. 2014; 24 (12): 1123-1153.
Emery AE. The muscular dystrophies. Lancet. 2002; 359 (9307): 687-695.
Kaplan JC. The 2012 version of the gene table of monogenic neuromuscular disorders. Neuromuscul Disord. 2011; 21 (12): 833-861.
Deconinck N, Dan B. Pathophysiology of Duchenne muscular dystrophy: current hypotheses. Pediatr Neurol. 2007; 36 (1): 1-7.
Udd B. Molecular biology of distal muscular dystrophies-sarcomeric proteins on top. Biochim Biophys Acta. 2007; 1772 (2): 145-158.
Kanagawa M, Toda T. The genetic and molecular basis of muscular dystrophy: roles of cell-matrix linkage in the pathogenesis. J Hum Genet. 2006; 51 (11): 915-926.
Gómez-Díaz B, Rosas-Vargas H, Roque-Ramírez B, Meza-Espinoza P, Ruano-Calderón LA, Fernández-Valverde F et al. Immunodetection analysis of muscular dystrophies in Mexico. Muscle Nerve. 2012; 45 (3): 338-345.
Schwartz M, Hertz JM, Sveen ML, Vissing J. LGMD2I presenting with a characteristic Duchenne or Becker muscular dystrophy phenotype. Neurology. 2005; 64 (9): 1635-1637.
Danieli GA, Mostacciuolo ML, Bonfante A, Angelini C. Duchenne muscular dystrophy. A population study. Hum Genet. 1977; 35 (2): 225-231.
Magri F, Govoni A, D’Angelo MG, Del Bo R, Ghezzi S , Sandra G et al. Genotype and phenotype characterization in a large dystrophinopathic cohort with extended follow-up. J Neurol. 2011; 258 (9): 1610-1623.
Ervasti JM. Dystrophin, its interactions with other proteins, and implications for muscular dystrophy. Biochim Biophys Acta. 2007; 1772 (2): 108-117.
Kalman L, Leonard J, Gerry N, Tarleton J, Bridges C, Gastier-Foster JM et al. Quality assurance for Duchenne and Becker muscular dystrophy genetic testing: development of a genomic DNA reference material panel. J Mol Diagn. 2011; 13 (2): 167-174.
Rani AQ, Sasongko TH, Sulong S, Bunyan D, Salmi AR, Zilfalil BA et al. Mutation spectrum of dystrophin gene in malaysian patients with Duchenne/Becker muscular dystrophy. J Neurogenet. 2013; 27 (1-2): 11-15.
Koenig M, Beggs AH, Moyer M, Scherpf S, Heindrich K, Bettecken T et al. The molecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion. Am J Hum Genet. 1989; 45 (4): 498-506.
Mahmood OA, Jiang XM. Limb-girdle muscular dystrophies: where next after six decades from the first proposal (Review). Mol Med Rep. 2014; 9 (5): 1515-1532.
Sewry CA. Muscular dystrophies: an update on pathology and diagnosis. Acta Neuropathol. 2010; 120 (3): 343-358.
Worton RG, Duff C, Sylvester JE, Schmickel RD, Willard HF. Duchenne muscular dystrophy involving translocation of the DMD gene next to ribosomal RNA genes. Science. 1984; 224 (4656): 1447-1449.
Ray PN, Belfall B, Duff C, Logan C, Kean V, Thompson MW et al. Cloning of the breakpoint of an X;21 translocation associated with Duchenne muscular dystrophy. Nature. 1985; 318 (6047): 672-675.
Thompson MW, Ray XM, Belfall B, Duff C, Logan C, Oss I et al. Linkage analysis of polymorphisms within the DNA fragment XJ cloned from the breakpoint of an X;21 translocation associated with X linked muscular dystrophy. J Med Genet. 1986; 23 (6): 548-555.
Monaco AP, Bertelson CJ, Colletti-Feener C, Kunkel LM. Localization and cloning of Xp21 deletion breakpoints involved in muscular dystrophy. Hum Genet. 1987; 75 (3): 221-227.
Koenig M, Monaco AP, Kunkel LM. The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell. 1988; 53 (2): 219-228.
Nouri N, Fazel-Najafabadi E, Salehi M, Hosseinzadeh M, Behnam M, Ghazavi MR et al. Evaluation of multiplex ligation-dependent probe amplification analysis versus multiplex polymerase chain reaction assays in the detection of dystrophin gene rearrangements in an Iranian population subset. Adv Biomed Res. 2014; 3: 72.
Magaña JJ, Leyva-García N, Cisneros B. Pathogenesis of myotonic dystrophy type 1. Gac Med Mex. 2009; 145 (4): 331-337.
Magaña JJ, Cisneros B. Perspectives on gene therapy in myotonic dystrophy type 1. J Neurosci Res. 2011; 89 (3): 275-285.
Meola G. Clinical aspects, molecular pathomechanisms and management of myotonic dystrophies. Acta Myol. 2013; 32 (3): 154-165.
Mahadevan M, Tsilfidis C, Sabourin L, Shutler G, Amemiya C, Jansen G et al. Myotonic dystrophy mutation: an unstable CTG repeat in the 3’ untranslated region of the gene. Science. 1992; 255 (5049): 1253-1255.
Magaña JJ, Cortes-Reynosa P, Escobar-Cedillo R, Gómez R, Leyva-García N, Cisneros B. Distribution of CTG repeats at the DMPK gene in myotonic dystrophy patients and healthy individuals from the Mexican population. Mol Biol Rep. 2011; 38 (2): 1341-1346.
Schoser B, Timchenko L. Myotonic dystrophies 1 and 2: complex diseases with complex mechanisms. Curr Genomics. 2010; 11 (2): 77-90.
Prior TW. Spinal muscular atrophy: a time for screening. Curr Opin Pediatr. 2010; 22 (6): 696-702.
Piepers S, van den Berg LH, Brugman F, Scheffer H, Ruiterkamp-Versteeg M, van Engelen BG et al. A natural history study of late onset spinal muscular atrophy types 3b and 4. J Neurol. 2008; 255 (9): 1400-1404.
Monani UR, Sendtner M, Coovert DD, Parsons DW, Andreassi C, Le TT et al. The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn(-/-) mice and results in a mouse with spinal muscular atrophy. Hum Mol Genet. 2000; 9 (3): 333-339.
Gennarelli M, Lucarelli M, Capon F, Pizzuti A, Merlini L, Angelini C et al. Survival motor neuron gene transcript analysis in muscles from spinal muscular atrophy patients. Biochem Biophys Res Commun. 1995; 213 (1): 342-348.
Parsons DW, McAndrew PE, Iannaccone ST, Mendell JR, Burghes AH, Prior TW. Intragenic telSMN mutations: frequency, distribution, evidence of a founder effect, and modification of the spinal muscular atrophy phenotype by cenSMN copy number. Am J Hum Genet. 1998; 63 (6): 1712-1723.
Velázquez-Pérez L, Hernández-Hernández O, Leyva-García N, Cortés H, Cisneros B, Magaña JJ. Ataxia espinocerebelosa tipo 2 (Parte A): epidemiología y características clínicas y genéticas. Inv Disc. 2014; 3 (3): 114-122.
Durr A. Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurol. 2010; 9 (9): 885-894.
Manto MU. The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum. 2005; 4 (1): 2-6.
Matilla-Dueñas A, Sánchez I, Corral-Juan M, Dávalos A, Álvarez R, Latorre P. Cellular and molecular pathways triggering neurodegeneration in the spinocerebellar ataxias. Cerebellum. 2010; 9 (2): 148-166.
Bird TD. Hereditary ataxia overview. Seattle (WA): University of Washington, Seattle; 1993 (updated 2012).
Magana JJ, Velázquez-Pérez L, Cisneros B. Spinocerebellar ataxia type 2: clinical presentation, molecular mechanisms, and therapeutic perspectives. Mol Neurobiol. 2013; 47 (1): 90-104.
Alonso E, Martínez-Ruano L, De Biase I, Mader C, Ochoa A, Yescas P et al. Distinct distribution of autosomal dominant spinocerebellar ataxia in the Mexican population. Mov Disord. 2007; 22 (7): 1050-1053.
Teive HA. Spinocerebellar ataxias. Arq Neuropsiquiatr. 2009; 67 (4): 1133-1142.
Velázquez-Pérez L, Cerecedo-Zapata CM, Hernández-Hernández O, Martínez-Cruz E, Tapia-Guerrero YS, González-Pina R et al. A comprehensive clinical and genetic study of a large Mexican population with spinocerebellar ataxia type 7. Neurogenetics. 2015; 16 (1): 11-21.
Magana JJ, Tapia-Guerrero YS, Velázquez-Pérez L, Cerecedo-Zapata CM, Maldonado-Rodríguez M, Jano-Ito JS et al. Analysis of CAG repeats in five SCA loci in Mexican population: epidemiological evidence of a SCA7 founder effect. Clin Genet. 2014; 85 (2): 159-165.
Magana JJ, Gómez R, Maldonado-Rodríguez M, Velázquez-Pérez L, Tapia-Guerrero YS, Cortés H et al. Origin of the spinocerebellar ataxia type 7 gene mutation in Mexican population. Cerebellum. 2013; 12 (6): 902-905.
Palau-Martínez F, Cuesta-Peredo A, Pedrola-Vidal L. Avances en la genética molecular de las neuropatías hereditarias. Rev Neurol. 2002; 35 (3): 246-253.
Berciano J, Berciano NT, Combarros O. Original descriptions of peroneal muscular atrophy. Muscle Nerve. 2003; 28 (2): 251-252.
Bouche P, Gherardi R, Cathala HP, Lhermitte F, Castaigne P. Peroneal muscular atrophy. Part 1. Clinical and electrophysiological study. J Neurol Sci. 1983; 61 (3): 389-399.
Banchs I, Casasnovas C, Montero J, Volpini V, Martínez-Matos JA. Charcot-Marie-Tooth disease with intermediate conduction velocities caused by a novel mutation in the MPZ gene. Muscle Nerve. 2010; 42 (2): 184-188.
Li J. Inherited neuropathies. Semin Neurol. 2012; 32 (3): 204-214.
Pentao L, Wise CA, Chinault AC, Patel PI, Lupski JR. Charcot-Marie-Tooth type 1A duplication appears to arise from recombination at repeat sequences flanking the 1.5 Mb monomer unit. Nat Genet. 1992; 2 (4): 292-300.
Russo M, Laurá M, Polke JM, Davis MB, Blake J, Brandner S et al. Variable phenotypes are associated with PMP22 missense mutations. Neuromuscul Disord. 2011; 21 (2): 106-114.
Berciano J, Casasnovas C, Sivera R, Vilchez JJ, Infante J, Pelayo-Negro AL et al. Guía diagnóstica en el paciente con enfermedad de Charcot-Marie-Tooth. Neurología. 2012; 27 (3): 169-178.
Cortés H, Bautista-Tirado T, Escobar-Cedillo RE, Magaña JJ, Leyva-García N. Detección de la duplicación del gen PMP22 en pacientes con neuropatía periférica: estudio en la población mexicana. Rev Neurol. 2014; 59: 111-117.
Chamberlain JS, Gibbs RA, Ranier JE Caskey CT. Multiplex PCR for the diagnosis of Duchenne muscular dystrophy, in PCR protocols: a guide to methods and applications. In: M, Gelfand DH, Sninsky JJ, White TJ, editors. San Diego: Academic Press; 1990. pp. 272-281.
Beggs AH, Koenig M, Boyce FM, Kunkel LM. Detection of 98% of DMD/BMD gene deletions by polymerase chain reaction. Hum Genet. 1990; 86 (1): 45-48.
Anderson LV, Davison K. Multiplex Western blotting system for the analysis of muscular dystrophy proteins. Am J Pathol. 1999; 154 (4): 1017-122.
Tomé S, Nicole A, Gomes-Pereira M, Gourdon G. Non-radioactive detection of trinucleotide repeat size variability. PLoS Curr. 2014; 6. doi: 10.1371/currents.md.ad50113b899fa1352ce70c087eead706.
Baris I, Etlik O, Koksal V, Arican-Baris ST. Rapid diagnosis of spinal muscular atrophy using tetra-primer ARMS PCR assay: simultaneous detection of SMN1 and SMN2 deletion. Mol Cell Probes. 2010; 24 (3): 138-141.
Cagnoli C, Stevanin G, Michielotto C. Large pathogenic expansions in the SCA2 and SCA7 genes can be detected by fluorescent repeat-primed polymerase chain reaction assay. J Mol Diagn. 2006; 8 (1): 128-132.
Wein N, Krahn M, Courrier S, Bartoli M, Salort-Campana E, Nguyen K et al. Immunolabelling and flow cytometry as new tools to explore dysferlinopathies. Neuromuscul Disord. 2010; 20 (1): 57-60.
Gallardo E, de Luna N, Diaz-Manera J, Rojas-García R, Gonzalez-Quereda L, Flix B et al. Comparison of dysferlin expression in human skeletal muscle with that in monocytes for the diagnosis of dysferlin myopathy. PLoS One. 2011; 6 (12): e29061.
Nicholson GA. Mutation testing in Charcot-Marie-Tooth neuropathy. Ann NY Acad Sci. 1999; 883: 383-388.
Silander K, Meretoja P, Juvonen V et al. Spectrum of mutations in Finnish patients with Charcot-Marie-Tooth disease and related neuropathies. Hum Mutat. 1998; 12: 59-68.
Holmberg BH, Holmgren G, Nelis E, van Broeckhoven C, Westerberg B. Charcot-Marie-Tooth disease in northern Sweden: pedigree analysis and the presence of the duplication in chromosome17p11.2. J Med Genet. 1994; 31: 435-441.
Abe A, Numakura C, Kijima K, Hayashi M, Hashimoto T, Hayasaka K. Molecular diagnosis and clinical onset of Charcot-Marie-Tooth disease in Japan. J Hum Genet. 2011; 56: 364-368.
Mersiyanova IV, Ismailov SM, Polyakov AV et al. Screening for mutations in the peripheral myelin genes PMP22, MPZ and Cx32 in Russian Charcot-Marie-Tooth neuropathy patients. Hum Mutat. 2000; 15: 340-347.
Antonidi T, Majumdar A, Burton-Jones S, Williams M. Inherited peripheral neuropathies: Genetic testing in the diagnostic laboratory. Neuromuscul Disord. 2011; 21: 687-688.