2013, Number 1
<< Back Next >>
Rev Mex Ing Biomed 2013; 34 (1)
Simplification of the inverse electroencephalographic problem to one homogeneous region with null Neumann condition
Morín-Castillo MM, Oliveros-Oliveros JJ, Conde-Mones JJ, Fraguela-Collar A, Gutiérrez-Arias EM, Flores-Mena E
Language: Spanish
References: 12
Page: 41-51
PDF size: 936.22 Kb.
ABSTRACT
Objective: To give a simplification of the Inverse
Electroencephalographic Problem (IEP) from the case of multilayer
conductive medium to the case of a homogeneous region with null
Neumann condition.
Methodology: IEP is divided in three problems,
two of which are resolved using the measurements of potential on the
scalp and with these solutions and the third problem the simplification
is carried out. In order to validate the simplification a synthetic
example is generated using the model of concentric spheres.
Results:
Through of simplification, the source is determined from the Poisson
equation with null Neumann condition and an additional data on
the boundary of the homogeneous region, which is obtained from
the measurement. This is valid for regions with smooth boundary.
Additionally, in the case of concentric spheres, it is statement the
identification problem for dipolar sources (representing epileptic
focus) using this simplification and Green function.
Conclusion: The
simplification presented here allows us to analyze the inverse problem
in one region, which simplifies the theoretical and numerical study.
In particular it may be useful to analyze the problem of parameter
identification of a dipolar source.
REFERENCES
Fraguela A, Morin M. Oliveros J. “Modelos Matemáticos en Electroencefalografía Inversa” En: Jiménez Pozo M, Bustamante González J, editores, Tópicos de la Teoría de Aproximación II, Capítulo 4. Textos Científicos, Benemérita Universidad Autónoma de Puebla, 2007; 73-95.
Fuertes de Gilbert Rivera B., López Gutiérrez R., Gil Gregorio P. “EPILEPSIA” En: Tratado de geriatría para residentes. Editado por Sociedad Española de Geriatría y Gerontología (SEGG), Príncipe de Vergara, 57-59, 1.ž B, 28006 (Madrid), 2006: 519-530.
Heller L. “Return Current in Encephalography. Variational Principles”. Biophysical Journal, 1990; 5:. 601-607.
Sarvas J. “Basic Mathematical and Electromagnetic Concepts of the Biomagnetic Inverse Problem”. Phys. Med. Biol., 1987, 32(1): 11-22.
Grave R, González S, Gómez C. M. “Bases biofísicas de la localización de los generadores cerebrales del electroencefalograma. Aplicación de un modelo tipo distribuido a la localización de focos epilépticos”. Revista de Neurología, 2004; 39: 748-756.
Nuñez P.L. “Electric Field of the Brain". New York, Oxford Univ. Press, 1981.
Fraguela A, Morín M, Oliveros J. “Planteamiento del Problema Inverso de Localización de los Parámetros de una Fuente de Corriente Neuronal en forma de Dipolo”. Comunicaciones de la Sociedad Matemática Mexicana, 1999; 25: 41-55.
Fraguela A, Oliveros J, Grebennikov A. “Planteamiento operacional y análisis del problema inverso electroencefalográfico”. Revista Mexicana de Física, 2001; 47 (2): 162-174.
Fraguela A, Morín M, Oliveros J. “Inverse electroencephalography for volumetric sources”. Mathematics and Computers in Simulation, 2008; 78: 481-492.
Von Ellenrieder N, Muravchik C. H, Nehorai F. A. “A Meshless Method for Solving the EEG Forward Problem”. IEEE Transactions on Biomedical Engineering, 2005; 52(2): 249-257.
Sobolev S. L. “Partial Differential Equations of Mathematical Physics”. Addison-Wesley Publishing Company (Inc. Moscú), 1964.
Von Ellenrieder N, Muravchik C. H, Nehorai F. A. “Effects of Geometric Head Model Perturbations on the EEG Forward and Inverse Problems”. IEEE Transactions on Biomedical Engineering, 2006; 53(3): 421-429.