2013, Number 1
Next >>
Rev Mex Ing Biomed 2013; 34 (1)
Non-rigid Multimodal Medical Image Registration Based on Local Variability
Reducindo I, Arce-Santana ER, Campos-Delgado DU, Vigueras-Gomez F
Language: Spanish
References: 44
Page: 7-21
PDF size: 898.51 Kb.
ABSTRACT
In this work, we present a novel approach for multimodal elastic
registration of medical images, where the key idea is to use local
variability measures based on entropy, variance or a combination
of these metrics. The proposed methodology relies on nding
the displacements vector eld between pixels of a source image
and a target one, using the following three steps: rst, an initial
approximation of the vector eld is achieved by using a parametric
registration based on particle ltering between the images to align;
second, the images previously registered are mapped to a common
space where their intensities can be compared; and third, we
obtain the optical
ow between the images in this new space. To
evaluate the proposed algorithm, a set of computed tomography
and magnetic resonance images obtained in dierent views, were
modied with synthetic deformation elds. The results obtained
with the four proposed local variability measures show an average
error of less than 1.4 mm, and in the case of the entropy less than
1 mm. In addition, the convergence of the algorithm is highlighted
by the joint entropy. Therefore, the described methodology
could be considered as a new alternative for multimodal elastic
registration of medical images.
REFERENCES
Hill D. L. G., Batchelor P. G., Holden M., y Hawkes D. J., Medical image registration," Physics in Medicine and Biology, vol. 46, no. 3, 2001.
Pluim J. P. y Fitzpatrick J. M., Image registration," IEEE Transactions on Medical Imaging, vol. 22, pp. 1341{1343, Noviembre 2003.
Rueckert D. y Aljabar P., Nonrigid registration of medical images: Theory, methods, and applications," IEEE Signal Processing Magazine, vol. 27, pp. 113{119, Julio 2010.
Fischer B. y Modersitzki J., Ill{ posed medicine{an introduction to image registration," Inverse Problems, vol. 24, Mayo 2008.
Zitova B. y Flusser J., Image registration methods: a survey," Image and vision computing, vol. 21, pp. 977{1000, 2003.
Nocedal J. y Wright S. J., Numerical Optimization. Springer, 2 ed., 2006.
Pluim J., Maintz J. y Viergever M., Image registration by maximization of combined mutual information and gradient information," Medical Imaging, IEEE Transactions on, vol. 19, pp. 809{814, Agosto 2000.
Viola P. A., Wells III W. M., Atsumi H., Nakajima S., y Kikinis R., Multi{modal volume registration by maximization of mutual information," Medical Image Analysis, vol. 1, no. 1, pp. 35{51, 1996.
Maes F., Collignon A., Vandermeulen D., Marchal G. y Suetens P., Multimodality image registration by maximization of mutual information," IEEE Transactions on Medical Imaging, vol. 16, pp. 187{198, Abril 1997.
Pluim J. P. W., Maintz J. B. A. y Viergever M. A., Mutual-informationbased registration of medical images: a survey," IEEE Transactions on Medical Imaging, vol. 22, pp. 986{1004, Agosto 2003.
Gonzalez R. C., Woods R. E., y Eddins S. L., Digital Image Processing Using MATLAB. Gatesmark Publishing, 2 ed., 2009.
Man K., Tang K., y Kwong S., Genetic Algorithms. Springer, 3 ed., 2001.
Arulampalam M. S., Maskell S., Gordon N. y Clapp T., A tutorial on particle lters for online nonlinear/non-gaussian bayesian tracking," IEEE Transactions on Signal Processing, vol. 50, pp. 174{188, Febrero 2002.
Das A. y Bhattacharya M., Ane-based registratiom of ct and mr modality images of human brain using multiresolution approaches: comparative study on genetic algorithm and particle swarm optimization," Neural Computing and Applications, Mayo 2010.
Arce-Santana E. R., Campos-Delgado D. U. y Alba A., Ane image registration guided by particle lter," IET Image Processing, vol. 6, no. 5, pp. 455{462, 2002.
Reducindo I., Registro rgido de imagenes guiado por ltro de partculas," Tesis de Maestra, Universidad Autonoma de San Luis Potos, Diciembre 2010.
Klein A., Andersson J., Ardekani B. A., Ashburner J., et al., Evaluation of 14 nonlinear deformation algorithms applied to human brain mri registration," Neuroimage, vol. 46, pp. 786{802, Julio 2009.
Xuan J., Wang Y., Freedman M. T., Adali T., y Shields P., Nonrigid medical image registration by nite-element deformable sheet-curve models," International Journal of Biomedical Imaging, pp. 1{9, 2006.
Fei W. y Vemuri B. C., Nonrigid multi-modal image registration using cross-cumulative residual entropy," International Journal of Computer Vision, vol. 74, no. 2, pp. 201{215, 2007.
Wang X. y Feng D. D., Automatic elastic medical image registration based on image intensity," International Journal of Image and Graphics, vol. 5, no. 2, pp. 351{369, 2005.
Serifovic-Trbalic A., Demirovic D., Prljaca N., Szekely G., y Cattin P. C., Intensitybased elastic registration incorporating and isotropic landmark erros and rotational information," International Journal of Computer Assisted Radiology and Surgery, vol. 4, pp. 463{468, Junio 2009.
Lange T., Papenberg N., Heldmann S., Modersitzki J., et al., 3d ultrasound-ct registration of the liver using combined landmark-intensity information," International Journal of Computer Assisted Radiology and Surgery, vol. 4, pp. 79{88, 2008.
Joshi A., Shattuck D., Thompson P., y Leahy R., Brain image registration using cortically constrained harmonic mappings," in Information Processing in Medical Imaging, Lecture Notes in Computer Science, pp. 359{371, Springer{ Verlag, 2007.
Baker S., Scharstein D., Lewis J., Roth S., Black M., y Szeliski R., A database and evaluation methodology for optical ow," International Journal of Computer Vision, vol. 92, pp. 1{31, 2011.
Arce-Santana E. R., Campos-Delgado D. U., y Alba A., A non-rigid multimodal image registration method based on particle lter and optical ow," in Advances in Visual Computing, vol. 6453 of Lecture Notes in Computer Science, pp. 35{44, Springer{Verlag, 2010.
Reducindo I., Arce-Santana E. R., Campos-Delgado D. U., y Alba A., Evaluation of multimodal medical image registration based on particle lter," Int. Conf. on Electrical Eng., Computing Science and Automatic Control, Septiembre 2010.
Mejia-Rodriguez A., Arce-Santana E., Scalco E., Tresoldi D., Mendez M., Bianchi A., Cattaneo G. y Rizzo G., Elastic registration based on particle lter in radiotherapy images with brain deformations," in Engineering in Medicine and Biology Society,EMBC, 2011 Annual International Conference of the IEEE, pp. 8049{8052, Septiembre 2011.
ter Haar Romeny B., Florack L., Koenderink J. y Viergever M., Scale space: Its natural operators and dierential invariants," in Information Processing in Medical Imaging, vol. 511 of Lecture Notes in Computer Science, pp. 239{255, Springer Berlin / Heidelberg, 1991.
Simon D., Optimal State Estimation. Wiley{Interscience, 1 ed., 2006.
Studholme C., Hill D. L. G., y Hawkes D. J., An overlap invariant entropy measure of 3d medical image alignment," Pattern Recognition, vol. 32, pp. 71{86, Enero 1999.
Reducindo I., Arce-Santana E. R., Campos-Delgado D. U., Alba A. y Vigueraz-Gomez J. F., An exploration of multimodal similarity metrics for parametric image registration based on particle ltering," Int. Conf. on Electrical Eng., Computing Science and Automatic Control, Octubre 2011.
Trees H. L. V., Detection, Estimation and Modulation Theory: Part 1. John Wiley & Sons, 2001.
Bruhn A., Weickert J. y Schnorr C., Lucas/kanade meets horn/schunck: Combining local and global optic ow methods," International Journal of Computer Vision, vol. 61, pp. 211{231, 2005.
Lucas B. D. y Kanade T., An iterative image registration technique with an application to stereo vision," Proceedings of Imaging Understanding Workshop, pp. 121{130, 1981.
Horn B. K. y Schunck B. G., Determining optical ow," Articial Intelligence, vol. 17, 1981.
Biswal P. C., Numerical Analysis.Prentice- Hall of India Pvt. Ltd., 2008.
Zikic D., Kamen A. y Navab N., Revisiting horn and schunck: Interpretation as Gauss-Newton optimisation," in In Proceedings of BMVC'2010, 2010.
Shannon C. E., A mathematical theory of communication," The Bell System Technical Journal, vol. 27, pp. 379{423, 623{656, Julio 1948.
Gefen S., Kiryati N. y Nissanov J., Atlasbased indexing of brain sections via 2- d to 3-d image registration," Biomedical Engineering, IEEE Transactions on, vol. 55, pp. 147 {156, Enero 2008.
Periaswamy S., General{Purpose Medical Image Registration. Tesis de Doctorado, Dartmouth College, Abril 2003.
Kwan R.-S., Evans A. y Pike G., Mri simulation-based evaluation of imageprocessing and classication methods," Medical Imaging, IEEE Transactions on, vol. 18, pp. 1085 {1097, Noviembre 1999.
Bookstein F., Principal warps: thinplate splines and the decomposition of deformations," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 11, no. 6, 1989.
Vercauteren T., Pennec X., Perchant A. y Ayache N., Dieomorphic demons: ecient non-parametric image registration" Neuroimage, vol. 45, pp. 61{ 72, Marzo 2009.
Ibanez L., Schroeder W., Ng L. y Cates J., The ITK Software Guide. Kitware, Inc. ISBN 1-930934-15-7, http://www.itk.org/ItkSoftwareGuide.pdf, second ed., 2005.