2015, Number 3
<< Back Next >>
Rev Mex Ing Biomed 2015; 36 (3)
Ambient Computing to Support the Association ofContextual Cues with Medication Taking
Palomares RJE, Rodriguez MM, Castro LJG, Ramirez TA, Rodriguez SAA
Language: Spanish
References: 28
Page: 209-221
PDF size: 613.49 Kb.
ABSTRACT
The modeling and simulation of the biomechanical effects present in the aorta, give the health specialist a
computational tool that can be used in the prevention and treatment of cardiovascular diseases. For that reason on
this research a mathematical model was developed in order to implement digital dimensional simulations to analyze
the mechanical behavior of arteries. First, its described the methodology used in the construction of the geometry of
the artery based on images from a CT scan, next the necessary experimental tests to obtain mechanical parameters
required by the model and finally his fractional order. Obtaining a finite element simulation where the areas of
greatest stress concentration and the displacement field are identified. To obtain these results a novel formulation
based on fractional order viscoelastic models was used and the values required for simulation were obtained through
the complex modulus.
REFERENCES
[1] J. O’Connor-Blanco, M. Rodriguez- Madrigal, H. Calas, E. Moreno, et al. Modelaci´on y simulaci´on de sistemas biomec´anicos acoplados utilizando el m´etodo de los elementos finitos. aplicaciones en ortopedia. In V Latin American Congress on Biomedical Engineering CLAIB 2011 May 16-21, 2011, Habana, Cuba, vol. 33 of IFMBE Proceedings, pp. 619–622. Springer Berlin Heidelberg, 2013.
[2] V. Dom´ınguez, M. Carbajal, G. Urriolagoitia, L. Hern´andez, et al. Biomec´anica de un f´emur sometido a carga. desarrollo de un modelo tridimensional por medio del m´etodo del elemento finito. Rev. Mex. Ortop. Traumatol, vol. 13, no. 6, pp. 633–638, 1999.
[3] V. Huayamave, C. Rose, S. Serra, B. Jones, et al. A patient-specific model of the biomechanics of hip reduction for neonatal developmental dysplasia of the hip: Investigation of strategies for low to severe grades of ddh. Journal of Biomechanics, 2015.
[4] J. Palacio, S. Hammer, D. Good, S. McNeill, et al. Quantitative diagnostic soft tissue through viscoelastic characterization using time-based instrumented palpation. Journal of the Mechanical Behavior of Biomedical Materials, vol. 12, no. 41, pp. 149–160, 2015.
[5] D. Bia, I. Aguirre, Y. Z´ocalo, L. Devera, et al. Diferencias regionales en viscosidad, elasticidad y amortiguamiento parietal de arterias sist´emicas: an´alisis isopuls´atil de la relaci´on presi´on-di´ametro arterial. Revista Espa˜nola de Cardiolog´ıa, vol. 5, no. 2, pp. 167–174, 2005.
[6] J. Goicolea. Factores biomec´anicos y su influencia en la funci´on cardiovascular. Revista Espa˜nola de Cardiolog´ıa, vol. 58, no. 2, pp. 121–125, 2005.
[7] R. Magin. Fractional calculus models of complex dynamics in biological tissues. Computers and Mathematics with Applications, vol. 12, no. 59, pp. 1586–1593, 2010.
[8] J. Kauffman and C. Drapaca. A fractional pressure-volume model of cerebrospinal fluid dynamics in hydrocephalus. In Mechanics of Biological Systems and Materials, Volume 4: Proceedings of the 2013 Annual Conference on Experimental and Applied Mechanics, page 179. Springer Science & Business Media, 2013.
[9] D. Nagehan and T. Ergin. Noninteger viscoelastic constitutive law to model soft biological tissues to in-vivo indentation. Acta of Bioengineering and Biomechanics, vol. 4, pp. 13–21, 2014.
[10] G. Davis, M. Kohandel, S. Sivaloganathan, and G. Tenti. The constitutive properties of the brain paraenchyma: Part 2. fractional derivative approach. Medical Engineering & Physics, vol. 28, no. 5, pp. 455–459, 2006.
[11] S. Bentil and R. Dupaix. Exploring the mechanical behavior of degrading swine neural tissue at low strain rates via the fractional zener constitutive model. Journal of the Mechanical Behavior of Biomedical Materials, vol. 30, pp. 83–90, 2014.
[12] B. Rashid, M. Destrade, and M. Gilchrist. Hyperelastic and viscoelastic properties of brain tissue in tension. In Proceedings of the ASME 2012 International Mechanical Engineering Congress & Exposition IMECE 2012 Nov 9-15, 2012, Houston, Texas, USA, pp. 619–622. ASME, 2012.
[13] C. Wex, C. Bruns, and A. Stoll. Fractional kelvin-voight model for liver tissue in the frequency and time domain. Scottish Journal of Arts, Social Sciences and Scientific Studies, vol. 11, no. 2, pp. 69–78, 2014.
[14] D. Craiem, F. Rojo, J. Atienza, R. Armentano, et al. Fractionalorder viscoelasticity applied to describe uniaxial stress relaxation of human arteries. Physics in Medicine and Biology, vol. 12, no. 53, pp. 4543–4554, 2008.
[15] D. Craiem and R. Armentano. A fractional derivative model to describe arterial viscoelasticity. Biorheology, vol. 12, no. 44, pp. 251–263, 2007.
[16] J. C´ordova-Villalobos, J. Barriguete- Mel´endez, A. Lara-Esqueda, S. Barquera, et al. Las enfermedades cr´onicas no transmisibles en m´exico: sinopsis epidemiol´ogica y prevenci´on integral. Salud p´ublica de M´exico, vol. 50, no. 5, pp. 419–427, 2008.
[17] J. M¨uller, S. Binting, S. Roll, and S. Willich. An update on regional variation in cardiovascular mortality within europe. European Heart Journal, vol. 29, no. 10, pp. 1316–1326, 2008.
[18] C. Martin, W. Sun, T. Pham, and J. Elefteriades. Predictive biomechanical analysis of ascending aortic aneurysm rupture potential. Acta Biomaterialia, vol. 9, no. 12, pp. 9392–9400, 2013.
[19] A. Tsamis, J. Krawiec, and D. Vorp. Elastin and collagen fibre microstructure of the human aorta in ageing and disease: A review. Journal of The Royal Society Interface, vol. 10, no. 83, 2013.
[20] Y. Fung. Biomechanics: Motion, Flow, Stress, and Growth. Springer, 2nd edition, 1990. [21] D. Craiem, F. Rojo, J. Atienza, G. Guinea, et al. Fractional calculus applied to model arterial viscoelasticity. Latin American Applied Research, vol. 12, no. 38, pp. 141–145, 2008.
[22] M. Caputo. Diffusion with space memory modelled with distributed order space fractional differential equations. Annals of Geophysics, vol. 46, no. 2, pp. 121– 130, 2003.
[23] J.E. Palomares-Ruiz, M. Rodriguez- Madrigal, J.G. Castro-Lugo, and A.A. Rodriguez-Soto. Fractional viscoelastic models applied to biomechanical constitutive equations. Revista Mexicana de F´ısica, vol. 61, no. 4, pp. 261–267, 2015.
[24] Giovanni Monegato. Kronrod and other quadratures. In Walter Gautschi, Volume 2, pp. 27–33. Springer, 2014.
[25] D. Balzani, S. Brinkhues, and G. Holzapfel. Constitutive framework for the modeling of damage in collagenous soft tissues with application to arterial walls. Computer Methods in Applied Mechanics Engineering, vol. 11, no. 15, pp. 139–151, 2012.
[26] G. Holzapfel, G. Sommer, C. Gasser, and P. Regitnig. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. American Journal of Physiology - Heart and Circulatory Physiology, vol. 289, no. 5, pp. H2048–H2058, 2005.
[27] G. Sommer and G. Holzapfel. 3d constitutive modeling of the biaxial mechanical response of intact and layer-dissected human carotid arteries. Journal of the Mechanical Behavior of Biomedical Materials, vol. 5, pp. 116– 128, 2012.
[28] P. Richardson. Biomechanics of plaque rupture: Progress, problems, and new frontiers. Annals of Biomedical Engineering, vol. 30, no. 4, pp. 524–536, 2002.
[29] Y. Hoi, H. Meng, S. Woodward, B. Bendok, et al. Effects of arterial geometry on aneurysm growth: three-dimensional computational fluid dynamics study. Journal of Neurosurgery, vol. 101, no. 4, pp. 676–681, 2004.