2015, Number 2
Next >>
TIP Rev Esp Cienc Quim Biol 2015; 18 (2)
Environmental history of an alpine lake in central Mexico (1230-2010)
Cuna E, Caballero M, Zawisza E, Ruiz C
Language: Spanish
References: 47
Page: 97-106
PDF size: 1573.79 Kb.
ABSTRACT
High altitude lakes, with a low mineralization, alkalinity and nutrient levels, are sensitive ecosystems to natural or
anthropogenic disturbances and currently are in risk due to global warming. There are only two high altitude
lakes (› 3,800 m asl) in Mexico, La Luna and El Sol, in the Nevado de Toluca crater. Chemical parameters
and surface sediment diatom assemblages show differences between both lakes, La Luna has lower pH and
mineralization, and in spite of their geographic proximity, each lake has a characteristic diatom assemblage,
with lower diatom concentration and species richness in La Luna. In this lake
Encyonema perpusillum and
Psammothidium helveticum are dominant while in El Sol are
Cavinula pseudoscutiformis, Psammothidium
levanderi and
Aulacoseira distans. This ecological distribution is the basis for the interpretation of the diatom
record from La Luna, from a 57 cm long core dated with
210Pb y
14C for which cladocera and magnetic
susceptibility data are also available. These proxies allowed identifying the beginning of a trend towards
colder and dryer climates around 1350-1510. This period correlates with the Little Ice Age (LIA) in which the
coldest and driest conditions were from 1660 to 1760, during the Maunder solar minimum. Cooler and drier
conditions are recoded until the begining of the 20th century. Correlation with other paleoenvironmental
records show that there was a regional trend to drier climates during the LIA in central Mexico.
REFERENCES
Koinig, K. A. et al. Environmental changes in an alpine lake (Gossenköllesee, Austria) over the last two centuries -the influence of air temperature on biological parameters. Journal of Paleolimnology 28, 147-160 (2002).
Battarbee, R. W. et al. Comparing palaeolimnological and instrumental evidence of climate change for remote mountain lakes over the last 200 years. Journal of Paleolimnology 28, 161-179 (2002).
Battarbee, R. W., Thompson, R., Catalan, J., Grytnes, J.-A. & Birks, H. Climate variability and ecosystem dynamics of remote alpine and arctic lakes: the MOLAR project. Journal of Paleolimnology 28, 1-6 (2002).
Macías, J. et al. Late Pleistocene-Holocene cataclysmic eruptions at Nevado de Toluca and Jocotitlan volcanoes, central Mexico. Brigham Young University Geology Studies 42, 493-528 (1997).
García, A. Modificaciones al Sistema de Clasificación Climática de Köpen (para adaptarlo a las condiciones de la República Mexicana). 246 (Universidad Nacional Autónoma de México, 1973).
Sandoval, B. A. J. Actualización y análisis cartográfico sobre el uso del suelo y vegetación del parque nacional Nevado de Toluca, Edo. de México. Tesis de Licenciatura (Biología) Universidad Nacional Autónoma de México, 107 págs. (1987).
Armienta, M. A. et al. Water chemistry of lakes related to active and inactive Mexican volcanoes. Journal of Volcanology and Geothermal Research 178, 249-258, doi:DOI 10.1016/j. jvolgeores.2008.06.019 (2008).
Dimas Flores, N., Alcocer, J. & Ciros Pérez, J. The structure of the zooplancton assemblages from two neighboring troical high mountain lakes. Journal of Freshwater Ecology 23, 21-31 (2007).
Alcocer, J., Oseguera, L. A., Escobar, E., Peralta, L. & Lugo, A. Phytoplankton biomass and water chemistry in two high mountains, tropical lakes in central Mexico. Arctic, Antarctic and Alpine Research 36, 342-346 (2004).
Löffler, H. Contribution to the limnology of High-Mountain lakes in Central America. Internationale Revue der Gesamten Hydrobiologie 57, 397-408 (1972).
Banderas-Tarabay, A. G. Phycoflora of the tropical high-mountain lake El Sol, Central Mexico, and some biogeographical relationships. Hydrobiologia 354, 17-40 (1997).
González, V. R. Contribución al conocimiento de la producción primaria de un cuerpo de agua de alta montaña y su relación con el medio a través de la aplicación de modelos multivariados. Tesis de Doctorado, Universidad Nacional Autónoma de México, 94 págs. (2002).
Sarma, S. S., Elías-Gutiérrez, M. & Serranía Soto, C. Rotifers from high altitude crater-lakes at Nevado de Toluca Volcano, México. Hidrobiológica 6, 33-38 (1996).
Sinev, A. Y. & Zawisza, E. Comments on cladocerans of crater lakes of the Nevado de Toluca Volcano (Central Mexico), with the description of a new species, Alona manueli sp. n. Zootaxa (in press) (2013).
Cervantes-Martínez, A., Gutiérrez-Aguirre, M. & Elías-Gutiérrez, M. Description of Iliocryptus nevadensis (Branchiopoda, Anomopoda), a new species from high altitude rater lake in the volcano Nevado de Toluca, Mexico. Crustaceana 354, 311-321 (2000).
Oseguera, P. L. Ecología de las comunidades bentónicas de dos lagos tropicales de alta montaña. Tesis de Maestría, Universidad Nacional Autónoma de México, 105 págs. (2004).
Caballero, M. E. The diatom flora of two acid lakes in central Mexico. Diatom. Res. 11, 227-240 (1996).
Cuna, E. et al. Environmental impacts of Little ice Age cooling in central Mexico recorded in the sediments of a tropical alpine lake. J. Paleolimnol. 51, 1-14, doi:10.1007/s10933-013-9748-0 (2014).
Zawisza, E., Caballero, M. & Ruiz-Fernández, C. 500 years of ecological changes recorded in subfossil cladocera in a highaltitude tropical lake la Luna, central Mexico. Stud. Quat. 29, 23-29 (2012).
Krammer, K. & Lange-Bertalot, H. Süsswasserflora von Mitteleuropa (Teil 1-4). (Stuttgart-Jena: VEB Gustav Fischer Verlag, 1986-1991).
Elías-Gutiérrez, M. et al. Cladocera y copepoda de las aguas continentales de México: Guía ilustrada. (UNAM, ECOSUR, SEMARNAT CONACYT, CONABIO, 2008).
Frey, D. G. in Handbook of Holocene Palaeoecology and Palaeohydrology (ed B. E. Berglund) 667-692 (John Wiley & Sons, 1986).
Tilia and TGView 2.0.2 (Illinois State Museum. Research and Collection Center, Springfield, Illinois, 2004).
Koinig, K. A., Schmidt, R., Sommaruga-Wögrth, S., Tessadri, R. & Psenner, R. Climate change as the primary cause for ph shifts in a high alpine lake. Water, Air, and Soil Pollution. 104, 167-180 (1998).
Sommaruga-Wögrath, S. et al. Temperature effects on the acidity of remote alpine lakes. Nature 387, 64-67, doi:Doi 10.1038/387064a0 (1997).
Radiocarbon Calibration Program CALIB Rev 5.0.1 (2005).
Falasco, E., Bona, F., Badino, G., Hoffmann, L. & Ector, L. Diatom teratological forms and environmental alterations a review. Hidrobiol. 623, 1-35 (2009).
Bennike, O., Sarmaja-Korjonen, K. & Seppanen, A. Reinvestigation of the classic late-glacial Bølling Sø sequence, Denmark: chronology, macrofossils, Cladocera and chydorid ephippia. J. Quatern. Sci. 19, 465-478 (2004).
Sarmaja-Korjonen, K. Chydorid ephippia as indicators of past environmental changes – a new method. Hydrobiol. 526, 129–136 (2004).
Mann, M. E. et al. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326, 1256-1260, doi:10.1126/science.1177303 (2009).
Bond, G. et al. Persistent solar influence on North Atlantic climate during the Holocene. Science 294, 2130-2136, doi:10.1126/ science.1065680 (2001).
Lozano-García, M. S., Caballero, M., Ortega, B., Rodríguez, A. & Sosa, S. Tracing the effects of the Little Ice Age in the tropical lowlands of Eastern Mesoamerica. Proceedings of the National Academy of Sciences of the United States of America 104, 16200-16203 (2007).
Vázquez-Selem, L. in Escenarios de cambio climático: Registros del Cuaternario en América Latina I Vol. I (eds. M. Caballero & B. Ortega) Ch. XI, 215-238 (Universidad Nacional Autónoma de México, 2011).
Contreras-Servín, C. Las sequías en México durante el siglo XIX. Investigaciones geográficas 56, 118-133 (2005).
Florescano, E. Análisis histórico de las sequías en México. (Secretaría de Agricultura y Recursos Hidráulicos, 1980).
Metcalfe, S. & Davies, S. Deciphering recent climate change in central Mexican lake records. Climatic Change 83, 169-186, doi:DOI 10.1007/s10584-006-9152-0 (2007).
Therrel, M. D., Stable, W. D. & Acuña-Soto, R. Aztec drought and the "curse of one rabbit". Bulletin of the American Meteorological Society 85, 1263-1272 (2004).
Sosa-Nájera, S., Lozano-García, S., Roy, P. D. & Caballero, M. Registro de sequías históricas en el occidente de México con base en el análisis elemental de sedimentos lacustres: El caso del lago de Santa María del Oro. Boletín de la Sociedad Geológica Mexicana 62, 437-451 (2010).
Metcalfe, S. E., Jones, M. D., Davies, S. J., Noren, A. & MacKenzie, A. Climate variability over the last two millennia in the North American Monsoon region, recorded in laminated lake sediments from Laguna de Juanacatlán, Mexico. The Holocene 28, 1195-1206, doi:10.1177/0959683610371994 (2010).
Stahle, D. W. et al. Major Mesoamerican droughts of the past millennium. Geophysical Research Letters 38 (2011).
Lachniet, M. S., Bernal, J. P., Asmerom, Y., Polyak, V. & Piperno, D. A 2400 yr Mesoamerican rainfall reconstruction links climate and cultural change. Geology 40, 259-262 (2012).
Hodell, D. A. et al. Climate change on the Yucatán Peninsula during the Little Ice Age. Quaternary Research 63, 109-121 (2005).
Jones, P. D. & Mann, M. E. Climate over past millenia. Reviews of Geophysics 42, RG2002 (2004).
Matthews, J. A. & Briffa, K. R. The “Little Ice Age”, reevaluation of an evolving concept. Geogr. Ann. 87 A, 17-36 (2005).
Jáuregui, E. Climate changes in Mexico during the historical and instrumented periods. Quaternary International 43-44, 7-17 (1997).
Kienel, U. et al. First lacustrine varve chronologies from Mexico: impact of droughts, ENSO and human activity since AD 1840 as recorded in maar sediments from Valle de Santiago. Journal of Paleolimnology 42, 587-609, doi:DOI 10.1007/s10933-009- 9307-x (2009).
Swan, S. L. Mexico in the Little Ice Age. The journal of Interdisciplinary History 11, 633-648 (1981).