Language: Spanish
References: 86
Page: S59-S90
PDF size: 764.36 Kb.
ABSTRACT
Rationale: Identification, correction and (ultimately) prevention of the disorders of growth and
development in pediatric ages should oblige to the definition of indicators required for exercises of body
reconstruction and nutritional assessment. Urinary creatinine has been historically recognized as a
surrogate of the size of body lean tissues and skeletal muscle mass. Incorporation of creatinine urinary
excretion into the aforementioned exercises would complement information offered by anthropometric
indicators of tissue accretion such as linear growth rate and growth velocity. Up to this moment how
creatinine urinary excretion changes as the Cuban child grows has not been documented. In addition, there are not (if not population-based, at least locally) reference intervals for the expected values of this indicator.
Objectives: To describe the behavior of the creatinine urinary excretion in Cuban children and
adolescents assisted at a pediatric hospital in the city of Havana (Cuba), and to provide reference intervals for this indicator locally valid and representative.
Study location: Laboratory for the Study of
Renal Function, Clinical Laboratory Service, “Juan Manuel Márquez” Teaching Pediatric Hospital (La Habana, Cuba).
Study design: Retrospective, analytical.
Study serie: Records from 1,140 Cuban children
and adolescents (Boys: 45.9%) assisted at the laboratory between the years 2000–2014 were used. These children represented 11.1% of the records kept at the laboratory.
Material and method: Laboratory records were queried in order to recover demographical, clinical, anthropometrical and biochemical data of the children and adolescents presented at the laboratory with values of Height and Body Mass Index (BMI) within the 10-90 percentiles of the Cuban tables for sex and age, preserved renal function (given by serum Creatinine values ‹ 97 percentile for sex and age), and adequate 24 hours urine collections. Values of urinary creatinine molar concentrations were converted into the corresponding mass quantities excreted daily, and were segregated according with the age instance for each sex. For each instance of age the median of the urinary creatinine excreted values was calculated, in order to weight the effect of outlying value. In addition, urinary creatinine excretion normalized indistinctively for the current value of body weight or body surface area (BSA) was treated in the same way. Expected values of urinary
creatinine excretion for sex and age of the child | adolescent were obtained from the regression equation
Creatinine_urinary_Excretion, mg.24 hours
-1 = f(Age; θ). Parameters θ vector of the regression equation was estimated as a least-squares solution. Local reference intervals for expected values of creatinine urinary excretion were obtained from the 100(1-α) prediction intervals associated with the adjusted regression equation.
Results: For each sex, creatinine urinary excretion incremented geometrically with
each change in the child´s age. A rapid increase was observed in the expected values of creatinine
excretion between the ages of 11 – 14 years, coincidently with the pubertal “spurt” moment. Expected
values of urinary creatinine excretion were higher in male children and adolescents. Urinary creatinine excretion normalized according with body weight or BSA was essentially constant in the range of
examined ages.
Conclusions: Expected values of urinary creatinine excretion for Cuban children and adolescents assisted at a teaching pediatric hospital in the city of Havana (Cuba), along with the corresponding reference intervals, have been documented. Urinary creatinine excretion can be predicted with a 100(1-α) level of accuracy for sex, age, body weight and BSA of the Cuban child|adolescent.
Behavior of the urinary creatinine excretion might reflect the rapid tissue accretion occurring during
adolescence. It is hoped that inclusion of the expected values for urinary creatinine excretion (as derived
in this work) in the exercises of body reconstruction and nutritional assessment should contribute to a
better follow-up of growth and development of the child|adolescent assisted in different scenarios of
pediatric care.
REFERENCES
Forbes GB. Human body composition: Growth, aging, nutrition, and activity. Springer. New York: 2012.
Fomon SJ, Haschke F, Ziegler EE, Nelson SE. Body composition of reference children from birth to age 10 years. Am J Clin Nutr 1982;35:1169-75.
Guo S, Roche AF, Fomon SJ, Nelson SE, Chumlea WC, Rogers RR; et al. Reference data on gains in weight and length during the first two years of life. J Pediatr 1991;119:355-62.
Fomon SJ, Nelson SE. Body composition of the male and female reference infants. Ann Rev Nutr 2002;22:1-17.
Guo SS, Chumlea WC, Roche AF, Siervogel RM. Age- and maturity-related changes in body composition during adolescence into adulthood: The Fels Longitudinal Study. Appl Radiation Isotopes 1998;49:581-5.
Ellis KJ, Shypailo RJ, Abrams SA, Wong WW. The reference child and adolescent models of body composition: A contemporary comparison. Ann NY Acad Sci 2000;904:374-82.
Janssen I, Heymsfield SB, Wang Z, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18-88 years. J Appl Physiol 2000;89:81-8.
Gallagher D, Visser M, De Meersman RE, Sepúlveda D, Baumgartner RN, Pierson RN; et al. Appendicular skeletal muscle mass: Effects of age, gender, and ethnicity. J Applied Physiol 1997;83:229-39.
Zurlo F, Larson K, Bogardus C, Ravussin E. Skeletal muscle metabolism is a major determinant of resting energy expenditure. J Clin Invest 1990;86:1423-31.
Dickerson JWT, Widdowson EM. Chemical changes in skeletal muscle during development. Biochem J 1960;74:247-54.
Forsberg AM, Nilsson E, Werneman J, Bergstrom J, Hultman E. Muscle composition in relation to age and sex. Clin Sci [London] 1991;81:249-56.
Costa Moreira O, Patrocínio de Oliveira CE, Candia-Luján R, Romero-Pérez EM, De Paz Fernández JA. Métodos de evaluación de la masa muscular: Una revisión sistemática de ensayos controlados aleatorios. Nutrición Hospitalaria [España] 2015;32:977-85.
Wolfe RR. The underappreciated role of muscle in health and disease. Am J Clin Nutr 2006; 84:475-82.
Evans WJ. Skeletal muscle loss: Cachexia, sarcopenia, and inactivity. Am J Clin Nutr 2010; 91:1123S-1127S.
Heymsfield SB, McManus C, Stevens V, Smith J. Muscle mass: Reliable indicator of protein energy malnutrition severity and outcome. Am J Clin Nutr 1982;35:1192-9.
Roussos C, Macklem PT. The respiratory muscles. N Engl J Med 1982;307:786-97.
Arora NS, Rochester DF. Effect of body weight and muscularity on human diaphragm muscle mass, thickness, and area. J Appl Physiol 1982;52:64-70.
Arora NS, Rochester DF. Effect of general nutritional and muscular status on the human diaphragm. Am Rev Respir Dis 1977;115:84-91.
Santana Porbén S. Apoyo nutricional en el destete del ventilador: A propósito de un caso. RCAN Rev Cubana Aliment Nutr 2010;20:351-60.
Lee RC, Wang Z, Heo M, Ross R, Janssen I, Heymsfield SB. Total-body skeletal muscle mass: Development and cross-validation of anthropometric prediction models. Am J Clin Nutr 2000;72:796-803.
Heymsfield SB, Gallagher D, Visser M, Nuñez C, Wang ZM. Measurement of skeletal muscle: Laboratory and epidemiological methods. J Gerontol A Biol Sci Med Sci 1995;50:23-9.
Gurney JM, Jelliffe DB. Arm anthropometry in nutritional assessment: Nomogram for rapid calculation of muscle circumference and cross-sectional muscle and fat areas. Am J Clin Nutr 1973;26:912-5.
Frisancho AR. New norms of upper limb fat and muscle areas for assessment of nutritional status. Am J Clin Nutr 1981;34:2540-5.
Heymsfield SB, McManus C, Smith J, Stevens V, Nixon DW. Anthropometric measurement of muscle mass: Revised equations for calculating bone-free arm muscle area. Am J Clin Nutr 1982;36:680-90.
Walker JB. Creatine: Biosynthesis, regulation, and function. Adv Enzymol 1979;50:177-24.
Hahn A, Meyer G. On the mutual transformation of creatine and creatinine. Ztschr Biol 1928;78:111-15.
Fitch CD, Lucy DD, Bomhofen JH, Dalrymple GV. Creatine metabolism in skeletal muscle: Creatine kinetics in man. Neurology 1968;18:32-42.
Burgess E, Blair A, Krichman K, Cutler RE. Inhibition of renal creatinine secretion by cimetidine in humans. Renal Physiol 1982;5:27-30.
Perrone RD, Madias NE, Levey AS. Serum creatinine as an index of renal function: New insights into old concepts. Clin Chem 1992;38:1933-53.
Bleiler RE, Schedl HP. Creatinine excretion: Variability and relationships to diet and body size. J Lab Clin Med 1972;59:945-55.
Myers VC, Fine MI. The creatine content of muscle under normal conditions: Its relation to the urinary creatinine. J Biol Chem 1913;14:9-26.
Heymsfield SB, Arteaga C, McManus C, Smith J, Moffitt S. Measurement of muscle mass in humans: Validity of the 24-hour urinary creatinine method. Am J Clin Nutr 1983;37:478-94.
Viteri FE, Alvarado J. The creatinine height index: Its use in the estimation of the degree of protein depletion and repletion in protein calorie malnourished children. Pediatrics 1970;46:696-705.
Bistrian BR, Blackburn GL, Sherman M, Scrimshaw NS. Therapeutic index of nutrition depletion in hospitalized patients. Surg Gynecol Obstet 1975;141:512-6.
Walser M. Creatinine excretion as a measure of protein nutrition in adults of varying age. JPEN J Parenter Enteral Nutr 1987;11(Suppl 5):73S-78S.
Barreto Penié J, Santana Porbén S, Consuegra Silveiro D. Intervalos de referencia locales para la excreción urinaria de creatinina en una población adulta. Nutrición Hospitalaria [España] 2003;18:65-75.
Santana Porbén S. Valores locales de referencia para la excreción urinaria de creatinina: Una actualización. RCAN Rev Cubana Aliment Nutr 2014;24:220-30.
Daniels AL, Hejinian LM. Growth in infants from the standpoint of physical measurements and nitrogen metabolism. I. Creatinine. Amer J Dis Child 1929;37:1128-35.
Stuart HC, Stevenson SS. Physical growth and development. En: Textbook of Pediatrics [Editor: Nelson WE]. Sexta Edición. WB Saunders Co. Philadelphia: 1954. pp. 10-66.
Stearns G, Newman KJ, McKinley JB, Jeans PC. The protein requirements of children from one to ten years of age. Ann NY Acad Sci 1957-1958;69:857
Remer T, Neubert A, Maser-Gluth G. Anthropometry-based reference values for 24-h urinary creatinine excretion during growth and their use in endocrine and nutritional research. Am J Clin Nutr 2002;75:561-9.
Forbes GB, Bruining GJ. Urinary creatinine excretion and lean body mass. Am J Clin Nutr 1976;29:1359-66.
Jaffé M. Uber den niederschlag, welchen pikrinsaure in normalen hrn erzeugt und uber eine neue reaction des kreatinins. Z Physiol Chem 1886;10:391-400 [Artículo aparecido originalmente en alemán].
Bartels H, Cikes M. Ueber Chromogene der Kreatininbestimmung nach Jaffé [Chromogens in the creatinine determination of Jaffé]. Clin Chim Acta 1969;26:1-10 [Artículo aparecido originalmente en alemán].
Onis M. Relationship between physical growth and motor development in the WHO Child Growth Standards. Acta Paediatrica 2006;95(S450):96-101.
Prentice A, Schoenmakers I, Laskey AM, de Bono S, Ginty F, Goldberg G. Nutrition and bone growth and development. In: Proceedings of a Symposium on Nutrition and health in children and adolescents. Proc Nutr Soc 2006;65:348-60.
Jordán Rodríguez J. Desarrollo humano en Cuba. Editorial Científico-Técnica. La Habana: 1979.
Olivier M, Aggarwal A, Allen J, Almendras AA, Bajorek ES, Beasley EM; et al. A highresolution radiation hybrid map of the human genome draft sequence. Science 2001;291:1298-1302.
Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG; et al. The sequence of the human genome. Science 2001;291:1304-51.
Dueñas Gómez E, Sánchez Tuxidó C, Santurio Gil A. Patrones antropométricos en el recién nacido. Editorial de Ciencias Médicas. La Habana: 1990
Gómez F, Ramos Galván R, Cravioto K, Frenk S. Malnutrition in infancy and childhood with special reference to kwashiorkor. Advances in Pediatrics 1955;7:131-140
Ramos Galván R, Mariscal C, Viniegra A, Pérez Ortiz B. Desnutrición en el niño. Edición Revolucionaria. Ciudad Habana: 1970.
Schmelzle HR, Fusch C. Body fat in neonates and young infants: Validation of skinfold thickness versus dual-energy X-ray absorptiometry. Am J Clin Nutr 2002;76:1096-1100.
Modi N, Hutton JL. Urinary creatinine excretion and estimation of muscle mass in infants of 25-34 weeks gestation. Acta Paediatr Scand 1990;79:1156-62.
Bell RQ, Darling JF. The prone head reaction in the human neonate: Relation with sex and tactile sensitivity. Child Development 1965;36:943-9.
Gorga D, Stern FM, Ross G, Nagler W. Neuromotor development of preterm and full-term infants. Early Human Development 1988;18:137-49.
Okamoto T, Okamoto K, Andrew PD. Electromyographic developmental changes in one individual from newborn stepping to mature walking. Gait Posture 2003;17:18-27.
Adolph KE, Vereijken B, Shrout PE. What changes in infant walking and why. Child Development 2003;74:475-97.
Samsom JF, de Groot L, Bezemer PD, Lafeber HN, Fetter WP. Muscle power development during the first year of life predicts neuromotor behaviour at 7 years in preterm born high-risk infants. Early Human Development 2002;68:103-18.
Rogol AD, Roemmich JN, Clark PA. Growth at puberty. J Adolescent Health 2002;31:192- 200.
Bhasin S, Bross R, Storer TW, Casaburi R. Androgens and muscles. En: Testosterone. Springer Berlin Heidelberg. Berlin: 1998. pp. 209-227.
Wells JC. Sexual dimorphism of body composition. Best Practice Research Clin Endocrinol Metabolism 2007;21:415-30.
Forbes GB. Body composition in adolescence. En: Human growth. Springer. New York: 1978. pp. 239-272.
Martin AD, Spenst LF, Drinkwater DT, Clarys JP. Anthropometric estimation of muscle mass in men. Med Sci Sports Exercise 1990;22:729-33.
Clarys JP, Martin AD, Drinkwater DT. Gross tissue weights in the human body by cadaver dissection. Human Biology 1984;459-73.
Mitsiopoulos N, Baumgartner RN, Heymsfield SB, Lyons W, Gallagher D, Ross R. Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J Appl Physiol 1998;85:115-22.
Fukunaga T, Roy RR, Shellock FG, Hodgson JA, Day MK, Lee PL; et al. Physiological cross‐sectional area of human leg muscles based on magnetic resonance imaging. J Orthopaedic Res 1992;10:926-34.
Wang W, Wang Z, Faith MS, Kotler D, Shih R, Heymsfield SB. Regional skeletal muscle measurement: Evaluation of new dual-energy X-ray absorptiometry model. J Applied Physiol 1999;87:1163-71.
Fuller NJ, Laskey MA, Elia M. Assessment of the composition of major body regions by dual‐energy X‐ray absorptiometry (DEXA), with special reference to limb muscle mass. Clin Physiol 1992;12:253-66.
Reimers K, Reimers CD, Wagner S, Paetzke I, Pongratz DE. Skeletal muscle sonography: A correlative study of echogenicity and morphology. J Ultrasound Med 1993;12:73-7.
Janmahasatian S, Duffull SB, Ash S, Ward LC, Byrne NM, Green B. Quantification of lean body weight. Clin Pharmacokinetics 2005;44:1051-65.
Wang Z, Zhu S, Wang J, Pierson RN, Heymsfield SB. Whole-body skeletal muscle mass: Development and validation of total-body potassium prediction models. Am J Clinical Nutr 2003;77:76-82.
Graystone JE. Creatinine excretion during growth. En: Human growth, body composition, cell growth, energy and intelligence (Editor: Cheek DB). Lea and Febiger. Philadelphia: 1988. Pp 182.
Wang ZM, Gallagher D, Nelson ME, Matthews DE, Heymsfield SB. Total-body skeletal muscle mass: Evaluation of 24-h urinary creatinine excretion by computerized axial tomography. Am J Clin Nutr 1996;63:863-9.
Santos Hernández CM. Desnutrición, sobrepeso, obesidad y osteoporosis. Criterios para el diagnóstico biofísico de una población adulta. RCAN Rev Cubana Aliment Nutr 2008;18(2 Supl 2):S6-S84.
Fernández Vieitez JA, Alvarez Cuesta JA, Williams Wilson L. Evaluación por tomografía axial computadorizada de 3 métodos antropométricos para estimar el área muscular del muslo. RCAN Rev Cubana Aliment Nutr 2001;15:31-6.
Salabarría JS, González M, Costa E, Montoto A, Blanco B. Nueva fórmula matemática para el cálculo de la proteinuria de 24 horas en niños. Rev Cubana Pediatr 1996;68(2):99-104.
Salabarría JS, Santana S, Martínez H, Benítez LM. Intervalos de predicción como valores de referencia para la creatinina sérica en una población infantil. Bol Med Hosp Infant Mex 1997;54(3):115-23.
Ghazali S, Barrat TM. Urinary excretion of calcium and magnesium in children. Arch Dis Child 1974;49:97-101.
Counahan R, Chantler C, Ghazali S, Kirkwood B, Rose F, Barratt TM. Estimation of glomerular filtration rate from plasma creatinine concentration in children. Arch Dis Child 1976;51:875-8.
Santana Porbén S, Martínez Canalejo H. Manual de Procedimientos Bioestadísticos. Segunda Edición. EAE Editorial Académica Española. ISBN-13: 9783659059629. ISBN-10: 3659059625. Madrid: 2012.
Sweid HA, Bagga A, Vaswani M, Vasudev V, Ahuja RK, Srivastava N. Urinary excretion of minerals, oxalate, and uric acid in north Indian children. Pediatr Nephrol 1997;11:189-92.
Acosta Jiménez SM, Rodríguez Suárez A, Díaz Sánchez ME. La obesidad en Cuba. Una mirada a su evolución en diferentes grupos poblacionales. RCAN Rev Cubana Aliment Nutr 2013;23:297-308.
August DA. Outcomes research, nutrition support, and nutrition care practice. Topics Clinical Nutrition 1995;10:1-16.
August DA. Creation of a specialized nutrition support outcomes research consortium: If not now, when? JPEN J Parenter Enteral Nutr 1996;20:394-400.
August DA, Serrano D. Outcomes research in specialized nutrition support. Nutr Clin Pract 2007;22:602-8.