2015, Number S1
<< Back Next >>
RCAN 2015; 25 (S1)
On the establishment of reference values for the urinary creatinine excretion for the cuban population
Badell MA, Bacallao MR
Language: Spanish
References: 55
Page: S28-S58
PDF size: 788.85 Kb.
ABSTRACT
Rationale: Energy-Nutrient malnutrition (ENM) constitutes a serious health problem affecting millions of people worldwide. Health care teams should have at their disposal the required tools for the recognition
of ENM. Urinary creatinine excretion has been one of the methods proposed for this end given the proved correlation it sustains with the size of skeletal muscle mass. There are not reference values describing the
behavior of this indicator in Cuba.
Objectives: To establish the reference values of urinary creatinine excretion for the Cuban population.
Study location: Departament of Renal Physiopathology, Institute of Nephrology “Dr. Abelardo Buch López”, Havana City (Cuba).
Design: Retrospective, analytical.
Material and method: Reference values for the urinary creatinine excretion for different demographical
strata of the Cuban population, and the percentiles associated with their distribution, were calculated
from the results accumulated in the Department records. Predictive equations for the urinary creatinine
excretion for each stratum were derived by means of multiple linear regression models. Reference values
thus obtained were adjusted according with the ideal weight of Cuban subjects annotated in the corresponding tables for sex and age.
Results: Reference values, distribution percentiles, and predictive equations for urinary creatinine excretion in different strata of the Cuban population were established with the records of 6,800 well-nourished subjects. A determination r
2 coefficient › 0.6 was secured in each instance.
Conclusions: The Cuban population now presents distribution percentiles, reference values and predictive equations of the urinary creatinine excretion for different strata regarding sex and age.
Future extensions: To assess the correlation between urinary creatinine excretion, on one side, and
the fat (estimated from the Body Mass Index) and lean (measured by DXA) compartments of the subject´s body composition.
REFERENCES
Folin OH. Laws governing the chemical composition of urine. Am J Physiol 1905;13:66.
Heymsfield SB, Arteaga C, McManus C, Smith J, Moffitt S. Measurement of muscle mass in humans: Validity of the 24-hour urinary creatinine method. Am J Clin Nutr 1983;37:478-94.
Afting EG, Bernhardt W, Janzen WC, Rothig HJ. Quantitative importance of non-skeletalmuscle methylhistidine and creatine in human urine. Biochem J 1981;200:449-52.
Myers VC, Fine MI. The creatine content of muscle under normal conditions: Its relation to the urinary creatinine. J Biol Chem 1913;14:9-26.
Burger M. The meaning of creatinine coefficient for the quantitative measurement of muscle mass and body composition. Creatine and creatinine excretion: Relationship to muscle mass. Z Gesamte Exp Med 1919;9:361-99.
Talbot NB. Measurement of obesity by the creatinine coefficient. Am J Dis Child 1938; 55:42-50.
Graystone JE. Creatinine excretion during growth. En: Human growth: Body composition cell growth, energy and intelligence [Editor: Cheek DB]. Lea & Febiger. Philadelphia: 1968. Volumen 12. pp 182-97.
Kriesberg RA, Bowdoin B, Meador CK. Measurement of muscle mass in humans by isotopic dilution of creatine-14C. J AppI Physiol 1970;28:264-7.
Picou D, Reeds PJ, Jackson A, Poulter N. The measurement of muscle mass in children using creatine-15N. Pediatr Res 1976;10:184-8.
Forbes GB, Bruining GJ. Urinary creatinine excretion and lean body mass. Am J Clin Nutr 1976;29:1359-66.
Viteri FE, Alvarado J. The creatinine height index: Its use in the estimation of the degree of protein depletion and repletion in protein calorie malnourished children. Pediatrics 1970; 46:696-705.
Mann SJ, Gerber LM. Estimation of 24-hour sodium excretion from spot urine samples. J Clin Hypertens (Greenwich) 2010;12:174-80.
Swan SK, Keane WF. Clinical evaluation of renal function. En: Primer on Kidney Disease (Editor: Greenberg A). Tercera Edición. National Kidney Foundation. New York: 2001. pp 25-28.
Li JZ, Chen YQ, Wang SX, E J, Pang W, Qin XQ. Urine sediment combined with urine protein as a biomarker for renal injury. Beijing Da Xue Xue Bao 2010;42:169-72.
Karabacak OR, Ipek B, Ozturk U, Demirel F, Saltas H, Altug U. Metabolic evaluation in stone disease. Metabolic differences between the pediatric and adult Patients with stone disease. Urology 2010;76:238-41.
Tormo C, Lumbreras B, Santos A, Romero L, Conca M. Strategies for improving the collection of 24-hour urine for analysis in the clinical laboratory: Redesigned instructions, opinion surveys, and application of reference change value to micturition. Arch Pathol Lab Med 2009;133:1954-60.
Benowitz NL, Dains KM, Dempsey D, Yu L, Jacob P. Estimation of nicotine dose after lowlevel exposure using plasma and urine nicotine metabolites. Cancer Epidemiol Biomarkers Prev 2010;19:1160-6.
Carnevale V, Pastore L, Camaioni M, Mellozzi M, Sabatini M, Arietti E, Fusilli S, Scillitani A, Pontecorvi M. Estimate of renal function in oldest old inpatients by MDRD study equation, Mayo Clinic equation and creatinine clearance. J Nephrol 2010;23:306-13.
Harrison RM, Delgado Saborit JM, Baker SJ, Aquilina N, Meddings C, Harrad S, Matthews I, Vardoulakis S, Anderson HR; for the HEI Health Review Committee. Measurement and modeling of exposure to selected air toxics for health effects studies and verification by biomarkers. Res Rep Health Eff Inst 2009;143:3-96.
Diamandopoulos A, Goudas P, Arvanitis A. Comparison of estimated creatinine clearance among five formulae (Cockroft-Gault, Jelliffe, Sanaka, simplified 4-variable MDRD and DAF) and the 24 hours-urine-collection creatinine clearance. Hippokratia 2010;14:98-104.
Barr DB, Wilder LC, Caudill SP, González AJ, Needham LL, Pirkle JL. Urinary creatinine concentrations in the US population: Implications for urinary biologic monitoring measurements. Environ Health Perspect 2005;113:192-200.
Bistrian BR, Blackburn GL, Sherman M, Scrimshaw NS. Therapeutic index of nutrition depletion in hospitalized patients. Surg Gynecol Obstet 1975;141:512-6.
Bistrian BR. Evaluación de la desnutrición proteica-energética en los pacientes quirúrgicos. En: Nutrición en el paciente quirúrgico (Editor: Hill GL). Salvat Editores SA. Barcelona: 1985. pp 45.
Walser M. Creatinine excretion as a measure of protein nutrition in adults of varying age. JPEN J Parenter Enteral Nutr 1987;11(Suppl 5):73S-78S.
Barreto Penié J, Santana Porbén S, Consuegra Silveiro D. Intervalos de referencia locales para la excreción urinaria de creatinina en una población adulta. Nutrición Hospitalaria [España] 2003;18:65-75.
Kasiske BL, Keane WF. Laboratory assessment of renal disease: Clearance, urinalysis, and renal biopsy. En: The Kidney [Editores: Brenner BM, Rector Jr FC]. WB Saunders. Philadelphia PA: 2004. pp. 1137-1173.
Bonsnes RW. Taussky HH. On the colorimetric determination of creatinine by Jaffé reaction. K Biol Chem 1995;581:158-63.
DuBois D, DuBois EF. A formula to estimate the approximate surface area if height and weight are known. Arch Intern Med 1916;17:863-71.
DuBois D, DuBois EF. The measurement of the surface area of man. Arch Intern Med 1915;15:868-81.
Berdasco A, Esquivel M, Gutiérrez JA, Jiménez JM, Mesa D, Posada E; et al. Segundo estudio nacional de crecimiento y desarrollo. Cuba, 1982: Valores del peso y talla para la edad. Rev Cubana Pediatr 1991;63:518-36.
Berdasco Gómez A, Romero del Sol A. Características físicas de los adultos de zonas urbanas y rurales: Talla para la edad, peso para la edad y peso para la talla. RCAN Rev Cub Aliment Nutr 1991;5:36-49.
Solberg HE: Using a hospitalized population to establish reference intervals: pros and and cons [Editorial]. Clin Chem 1994;40:2205-6.
Stamatelou Kiriaki K, Francis Mildred E, Jones Camille A, Nyberg Leroy M, Curhan GC. Time trends in reported prevalence of kidney stones in the United States: 1976-1994. Kidney Int 2003;63:1817-23.
Third National Health and Nutrition Examination Survey. National Center for Health Statistics. Vital and Health Statistics. Series 2. Number 113. Washington: September 1992.
Lieske JC, Peña de la Vega LS, Slezak JM; et al. Renal Stones epidemiology in Rochester, Minnesota. An update. Kidney Int 2006;69:760-7.
Reyes L, Mirabal M, Strusser R. Comportamiento clínico-epidemiológico de la urolitiasis en un área rural del Caribe. Arch Esp Urolo 2002;55:527-34.
Reyes L, Mirabal M, Mañalich R, Almaguer M. Estudio comparativo del comportamiento clínico epidemiológico de la urolitiasis en dos poblaciones diferentes de Cuba. Rev Port Nefrol Hipert 2004;18:155-65.
Reyes L, Almaguer M, Castro T. Estudio clínico-epidemiológico de la urolitiasis en un área urbana caribeña. Nefrología 2002;22:239-44.
Oficina Nacional de Estadísticas. Censo de Población y Viviendas. Cuba. La Habana: 2002.
Ministerio de Salud Pública. Dirección Nacional de Registros Médicos y Estadísticas de Salud. Anuario Estadístico de Salud. La Habana: 2009.
Garrow JS, Webster J. Quetelet’s index (W/H2) as a measure of fatness. Int J bes 1985; 9:147-53.
Levey AS, Adler S, Caggiula AW, England BK, Greene T, Hunsicker LG; et al. Effects of dietary protein restriction on the progression of advanced renal disease in the Modification of Diet in Renal Disease Study. Am J Kidney 1996;7:2616-25.
Cockroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 1976;16:31-41.
Baracskay D, Jarjoura D, Cugino A, Blend D, Rutecki GW, Whittier FC. Geriatric renal function: estimating glomerular filtration in an ambulatory elderly population. Clin Nephrol. 1997l;47:222-8.
Oyuela Carrasco E, Rodríguez Castellanos F, Kimura E, Delgado Hernández R, Herrera Félix JP. Longitud renal por ultrasonografía en población mexicana adulta. Nefrología 2009;29: 30-4.
Yong Kang K, Joon Lee Y, Chul Park S, Woo Yang C, Soo Kim Y, Sung Moom I; et al. A comparative study of methods of estimating kidney length in kidney transplantation donors. Nephrol Dial Transplant 2007;22:2322-7.
Gavela T, Sánchez Bayle M, Gómez Mardones G, Gallego S, Martínez-Pérez J, Moya MT. Ecographic study of kidney size in children. Nefrologia 2006;26:325-9.
Kantarci F, Mihmanli I, Adaleti I, Ozer H, Gulsen F, Kadioglu A; et al. The effect of fluid on renal length measurement in adults. J Clin Ultrasound 2006;34:128-33.
Forbes, GB. Human body composition: Growth, aging, nutrition and activity. Springer- Verlag. New York, 1987.
Marshall W, Tanner JM. Variations in the pattern of pubertal changes in boys. Arch Dis Child 1970;45:13-20.
Marshall W, Tanner J. Variations in the pattern of pubertal changes in girls. Arch Dis Child 1969;44:291-300.
Tanimoto Y, Watanabe M, Kono R, Hirota C, Takasaki K, Kono K. Aging changes in muscle mass of Japanese. Nippon Ronen Igakkai Zasshi 2010;47:52-7.
Sluyter JD, Schaaf D, Scragg RK, Plank LD. Body mass index and percent body fat in a New Zealand multi-ethnic adolescent population. Int J Pediatr Obes 2011;6:36-44.
Wells JC, Williams JE, Chomtho S, Darch T, Grijalva-Eternod C, Kennedy K, Haroun D, Wilson C, Cole TJ, Fewtrell MS. Pediatric reference data for lean tissue properties: Density and hydration from age 5 to 20 years. Am J Clin Nutr 2010;91:610-8.
Webster J, Garrow JS. Creatinine excretion over 24 hours as a measure of body composition or of completeness of urine collection. Hum Nutr Clin Nutr 1985;39:101-6.