2015, Number 4
Evasion of the immune response: a lesson from mycobacterium tuberculosis
Vázquez RN, Stwart LG, Quesada LL, Falcón AY
Language: Spanish
References: 31
Page: 419-427
PDF size: 377.21 Kb.
ABSTRACT
Background: in the last years, tuberculosis has re-emerged as a public health problem of paramount importance worldwide, in developed countries and in developing countries. The advances in the obtaining of vaccines and new more effective drugs depend to a great extent on the knowledge about the characteristics of the pathogen and about the mechanisms that it uses to evade the immune response and thus the effect of the vaccine.
Objective: to argue the evasion of the immune response caused by mycobacterium tuberculosis, based on some mechanisms recently discovered.
Methods: descriptors from the Medical Subject Headings and Health Sciences Descriptors were used to make a bibliographic review of 60 published articles. Thirty articles from the last decade were chosen to constitute the research. The decrease or absence of an adaptable cellular response in the primary infection by mycobacterium tuberculosis causes an uncontrollable growth of the bacillus in the lungs and a fall in the survival, being some factors involved in the pathogenesis and in the activation of the immune system.
Conclusions: this germ is able to modulate the responses of T helper cells or clusters of differentiation 4 and 8 through the reduction of the synthesis and creation of various types of cytokines as well as the inhibition and induction of different processes of the host cell. Interleukin 12 plays an important role in the regulation of the infection of this germ.
REFERENCES
Okada M, Kita Y. Anti-tuberculosis immunity by cytotoxic T cells * granulysin and the development of novel vaccines (HSP-65 DNA+IL-12 DNA). Kek-kaku. 2010 Jun;85(6):531-8.
Chan SL, Reggiardo Z, Daniel TM, Girling DJ, Mitchison DA. Serodiagnosis of tuberculosis using an ELISA with antigen 5 and a hemagglutination assay with glycolipid antigens. Results in patients with newly diagnosed pulmonary tuberculosis ranging in extent of disease from minimal to ex-tensive. Am Rev Respir Dis. 1990 Aug;142(2):385-9.
Baer HH. The structure of an antigenic glycolipid (SL-IV) from Mycobacterium tuberculosis. Carbo-hydr Res. 1993 Feb 24;240:1-22.
Kumazawa Y, Shibusawa A, Suzuki T, Mizunoe K. Separation of an adjuvant-active glycolipid lack-ing peptide moiety from wax D preparation of My-cobacterium tuberculosis strain aoyama B. Immu-nochemistry. 1976 Feb;13(2):173-7.
Stop TB Partnership: The Global Plan to Stop TB 2006-2015. Geneva: WHO 2006.
6.Saldías P Fernando, Tirapegui S Fernando, DÍAZ P Orlando. Infección pulmonar por Mycobacterium avium complex en el huésped inmunocompetente. Rev chil enferm respir [Internet]. 2013 Sep [citado 2015 Feb 23];29(3):[aprox. 5 p.]. Dis-ponible en: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-73482013000300006&lng=es. http://dx.doi.org/10.4067/S0717-73482013000300006.
Behr M, Schurr E, Gros P. TB: screening for re-sponses to a vile visitor. Cell. 2010 Mar 5;140(5):615-8.
8 Blomgran R, Ludovic D, Volker B Joel D. “Mycobacterium Tuberculosis Inhibits Neutrophil Apoptosis, Leading to Delayed Activation of Naive CD4 T Cells.” Cell host & microbe 11.1 (2012): 81–90.
Butler RE, Brodin P, Jang J, Jang MS, Robertson BD, et al. “The Balance of Apoptotic and Necrotic Cell Death in Mycobacterium Tuberculosis Infected Macrophages Is Not Dependent on Bacterial Virulence.” Ed. Volker Briken. PLoS ONE 7.10 (2012): e47573. PMC. Web. 23 Feb. 2015.
Chauhan P, Jain R, Dey B, Tyagi A. Adjunctive immunotherapy with a-crystallin based DNA vac-cination reduces Tuberculosis chemotherapy period in chronically infected mice. Scientific Reports [serial online]. 2013;3:1821. Available from: MED-LINE Complete, Ipswich, MA. Accessed May 5, 2015.
Jeon BY, Eoh H, Ha SJ, Bang H, Kim SC, Sung YC, et al. Co-immunization of plasmid DNA encod-ing IL-12 and IL-18 with Bacillus Calmette-Guerin vaccine against progressive tuberculosis. Yonsei Med J. 2011 Nov 1;52(6):1008-15.
12.Kari AS, Dee ND, Michael FG, Tsungda H, Manjunatha MV,et al. A recombinant y cobacte-rium smegmatis induces potent bactericidal im-munity against Mycobacterium tuberculosis. Octo-ber 2011.Nature medicine. Volumen. 17, Número 10. Disponible en: http://web.a.ebscohost.com/ehost/pdfviewer/pdfviewer?sid=76c86a17-4f93-44cf-9871-c5ab23e5bc79%40sessionmgr4002&vid=0&hid=4109
Abebe M, Doherty TM, Wassie L, Aseffa A, Bo-bosha K, Demissie A, et al. Expression of apoptosis-related genes in an Ethiopian cohort study corre-lates with tuberculosis clinical status. Eur J Immu-nol. 2010 Jan;40(1):291-301.
Songane M, Kleinnijenhuis J, Alisjahbana B, Sahiratmadja E, Parwati I, Oosting M, et al. Poly-morphisms in Autophagy Genes and Susceptibility to Tuberculosis. Carvalho LH, ed. PLoS ONE 2012;7(8):e41618. doi:10.1371/journal.pone.0041618.
Dao DN, Sweeney K, Hsu T, Gurcha SS, Nasci-mento IP, Roshevsky D, et al. Mycolic acid modifi-cation by the mmaA4 gene of M. tuberculosis mod-ulates IL-12 production. PLoS Pathog. 2008 Jun;4(6):e1000081.
Prezzemolo T, Guggino G, La Manna MP, Di Liberto D, Dieli F, Caccamo N. Functional Signa-tures of Human CD4 and CD8 T Cell Responses to Mycobacterium tuberculosis. Frontiers in Immunol-ogy. 2014;5:180. disponible en: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4001014/
Simmons D, Canaday DH, Liu Y, Li Q, Huang A. Mycobacterium tunerculosis and TLR2 agonists inhibit induction of type I IFN and class I MHC an-tigen cross processing by TLR9. J Immunol. 2010;185(4):2405-15.
Mahon RN, Rojas RE, Fulton SA, Franko JL, Harding CV, Boom WH. Mycobacterium tuberculo-sis cell wall glycolipids directly inhibit CD4+ T-cell activation by interfering with proximal T-cell-receptor signaling. Infect Immun. 2009 Oct;77(10):4574-83.
19.Scott MC, Walusimbi M, Denise FJ, Christina L, Edwin Ch, Joyce B, et al. Tuberculosis Treatment in HIV Infected Ugandans with CD4 Counts .350 Cells/mm3 Reduces Immune Activation with No Effect on HIV Load or CD4 Count. PLoS ONE . Feb-ruary 2010 ,Volume 5 . Issue 2 .e9138
20.Christina LL, Scott MC, Denise FJ, Walusimbi M, Chervenak KA, Sophie N, et al. Effects of An-tiretroviral Therapy on Immune Function of HIV-infected Adults with Pulmonary Tuberculosis and CD4 + > 350 Cells/mm3. The Journal of Infectious Diseases 2011;203:992–1001.disponible en : http://web.a.ebscohost.com/ehost/pdfviewer/pdfviewer?sid=750750ab-d900-4616-b3de-0c67933b0757%40sessionmgr4004&vid=0&hid=4109
21.Varsha S, Mohit V, Shashank G, Rupak S, Nee-ta S, Dighamber B, et al. Suppressors of cytokine signaling inhibit effector T cell responses during Mycobacterium tuberculosis Infection. Immunology and Cell Biology. 2011. 89, 786–791. Varsha Srivastava , Mohit Vashishta, Shashank Gupta, Rupak Singla, Neeta Singla, Dighamber Be-hera and Krishnamurthy Nataraja
Rojas R, Wu M, Toossi Z, Kalsdorf B, Aung H, Hirsch CS, et al. Induction of serine protease inhib-itor 9 by Mycobacterium tuberculosis inhibits apop-tosis and promotes survival of infected macro-phages. J Infect Dis. 2012 Jan;205(1):144-51.
Frank C, Jim H, Louise K, Juan F, Marco L,Viviana P, et al. Phage display of functional ab single-chain T-cell receptor molecules specific for CD1b:Ac2SGL complexes from Mycobacterium tu-berculosisinfected cells. Camacho et al. BMC Im-munology 2013, 14(Suppl 1):S2 disponible: http://www.biomedcentral.com/1471-2172/14/S1/S2
Lancioni CL, Li Q, Thomas JJ, Ding X, Thiel B, Drage MG, et al. Mycobacterium tuberculosis lipo-proteins directly regulate human memory CD4(+) T cell activation via Toll-like receptors 1 and 2. In-fect Immun. 2011 Feb;79(2):663-73.
Lim YJ, Choi JA, Choi HH, Cho SN, Kim HJ, Jo EK, et al. Endoplasmic reticulum stress pathway-mediated apoptosis in macrophages contributes to the survival of Mycobacterium tuberculosis. PLoS One. 2011;6(12):e28531.
Behar SM, Martin CJ, Nunes-Alves C, Divangahi M, Remold HG. Lipids, apoptosis, and cross-presentation: links in the chain of host defense against Mycobacterium tuberculosis. Microbes In-fect. 2011 Aug;13(8-9):749-56.
Di Carlo P, Casuccio A, Romano A, Spicola D, Titone L, Caccamo N, et al. Lymphocyte apoptosis in children with central nervous system tuberculo-sis: a case control study. BMC Pediatr. 2011;11:108.
Behar SM, Martin CJ, Booty MG, Nishimura T, Zhao X, Gan HX, et al. Apoptosis is an innate de-fense function of macrophages against Mycobacte-rium tuberculosis. Mucosal Immunol. 2011 May;4(3):279-87.
29.Behar SM , Martin C J, Booty MG, Nishimura T, Zhao X, Gan H , Divangahi M, Remold HG. Apoptosis is an innate defense function of macro-phages against Mycobacterium tuberculosis. MAY 2011. MucosalImmunology . VOLUME 4 .NUMBER 3 | http://web.a.ebscohost.com/ehost/pdfviewer/pdfviewer?sid=8792720a-1ebe-4fe9-a0bf-dc2bdbfb66c9%40sessionmgr4002&vid=0&hid=4109
Divangahi M, Chen M, Gan H, Dejardins D, Hickman T, Lee D. Mycobaterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair. Nat Immunol. 2009;10(8):899-906.
31.Qing LM ,Fei L , Xing YY, Xiao ML ,Xia Z ,Chun Z , et al. Identification of latent tuberculosis infec-tion-related microRNAs in human U937macrophag-es expressing Mycobacterium tuberculosis Hsp16.3. BMC Microbiology 2014, 14:37 doi:10.1186/1471-2180-14-37.Disponiblen en: http://www.biomedcentral.com/1471-2180/14/37