2012, Number 4
<< Back Next >>
Ann Hepatol 2012; 11 (4)
Gut microbiota and nonalcoholic fatty liver disease
Machado MV, Cortez-Pinto H
Language: English
References: 83
Page: 440-449
PDF size: 139.36 Kb.
ABSTRACT
Recent evidence has linked obesity and the metabolic syndrome with gut dysbiota. The precise mechanisms
underlying that association are not entirely understood; however, microbiota can enhance the extraction
of energy from diet and regulate whole-body metabolism towards increased fatty acids uptake from adipose
tissue and shift lipids metabolism from oxidation to de novo production. Obesity and high fat diet relate
to a specific gut microbiota, which is enriched in Firmicutes and with less Bacterioidetes. Microbiota can
also play a role in the development of hepatic steatosis, necroinflammation and fibrosis. In fact, some
studies have shown an association between small intestinal bacterial overgrowth, increased intestinal
permeability and nonalcoholic steatohepatitis (NASH). That association is, in part, due to increased
endotoxinaemia and activation of the Toll-like receptor-4 signaling cascade. Preliminary data on probiotics
suggest a potential role in NASH treatment, however randomized controlled clinical trials are still lacking.
REFERENCES
Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, et al. Metagenomic analysis of the human distal gut microbiome. Science 2006; 312(5778): 1355-1359 [PMID: 16741115].
Diamant M, Blaak EE, de Vos WM. Do nutrient-gut-microbiota interactions play a role in human obesity, insulin resistance and type 2 diabetes? Obes Rev 2011; 12(4): 272-281 [PMID: 20804522].
Cani PD, Delzenne NM, Amar J, Burcelin R. Role of gut microflora in the development of obesity and insulin resistance following high-fat diet feeding. Pathologie-Biologie 2008; 56(5): 305-9 [PMID: 18178333].
Hill JO. Understanding and addressing the epidemic of obesity: an energy balance perspective. Endocrine Reviews 2006; 27(7): 750-61 [PMID: 17122359].
Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI. The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences of the United States of America 2004; 101(44): 15718-23 [PMID: 15505215].
Backhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proceedings of the National Academy of Sciences of the United States of America 2007; 104(3): 979-984 [PMID: 17210919].
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006; 444(7122): 1027-31 [PMID: 17183312].
Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences of the United States of America 2005; 102(31): 11070-11075 [PMID: 16033867].
Murphy EF, Cotter PD, Healy S, Marques TM, O’Sullivan O, Fouhy F, Clarke SF, et al. Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut 2010; 59(12): 1635- 1642 [PMID: 20926643].
Turnbaugh PJ, Backhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host & Microbe 2008; 3(4): 213-23 [PMID:18407065].
Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, et al. A core gut microbiome in obese and lean twins. Nature 2009; 457(7228): 480-4 [PMID: 19043404].
Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Science Translational Medicine 2009; 1(6): 6ra14 [PMID: 20368178].
Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature 2006; 444(7122): 1022-23 [PMID: 17183309].
Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, Yu Y, Parameswaran P, et al. Human gut microbiota in obesity and after gastric bypass. Proceedings of the National Academy of Sciences of the United States of America 2009; 106(7): 2365-70 [PMID: 19164560].
Kalliomaki M, Collado MC, Salminen S, Isolauri E. Early differences in fecal microbiota composition in children may predict overweight. The American Journal of Clinical Nutrition 2008; 87(3): 534-8 [PMID: 18326589].
Luoto R, Kalliomaki M, Laitinen K, Delzenne NM, Cani PD, Salminen S, Isolauri E. Initial dietary and microbiological environments deviate in normal-weight compared to overweight children at 10 years of age. J Pediatric Gastroenterology and Nutrition 2011; 52(1): 90-95 [PMID: 21150648].
Wu X, Ma C, Han L, Nawaz M, Gao F, Zhang X, Yu P, et al. Molecular characterisation of the faecal microbiota in patients with type II diabetes. Current Microbiology 2010; 61(1): 69-78 [PMID: 20087741].
Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PloS One 2010; 5(2): e9085 [PMID: 20140211].
Furet JP, Kong LC, Tap J, Poitou C, Basdevant A, Bouillot JL, Mariat D, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes 2010; 59(12): 3049-57 [PMID: 20876719].
Membrez M, Blancher F, Jaquet M, Bibiloni R, Cani PD, Burcelin RG, Corthesy I, et al. Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice. Faseb J 2008; 22(7): 2416-26 [PMID:18326786].
Delzenne NM, Cani PD. Interaction between obesity and the gut microbiota: relevance in nutrition. Annual Review of Nutrition 2011; 31: 15-31 [PMID: 21568707].
Xiong Y, Miyamoto N, Shibata K, Valasek MA, Motoike T, Kedzierski RM, Yanagisawa M. Short-chain fatty acids stimulate leptin production in adipocytes through the G protein- coupled receptor GPR41. Proceedings of the National Academy of Sciences of the United States of America 2004; 101(4): 1045-50 [PMID: 14722361].
Poupeau A, Postic C. Cross-regulation of hepatic glucose metabolism via ChREBP and nuclear receptors. Biochimica et Biophysica Acta 2011; 1812(8): 995-1006 [PMID: 21453770].
Ding S, Chi MM, Scull BP, Rigby R, Schwerbrock NM, Magness S, Jobin C, Lund PK. High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PloS One 2010; 5(8): e12191 [PMID: 20808947].
Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, Geurts L, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009; 58(8): 1091-103 [PMID: 19240062].
Claus SP, Tsang TM, Wang Y, Cloarec O, Skordi E, Martin FP, Rezzi S, et al. Systemic multicompartmental effects of the gut microbiome on mouse metabolic phenotypes. Molecular Systems Biology 2008; 4: 219 [PMID: 18854818].
Drenick EJ, Fisler J, Johnson D. Hepatic steatosis after intestinal bypass. Prevention and reversal by metronidazole, irrespective of protein-calorie malnutrition. Gastroenterology 1982; 82: 534-48 [PMID: 6797866].
Nazim M, Stamp G, Hodgson HJF. Non-alcoholic steatohepatitis associated with small intestinal diverticulosis and bacterial overgrowth. Hepato-Gastroentol 1989; 36: 349- 51 [PMID: 2516007].
Lichtman SN, Keku J, Schwab JH, et al. Hepatic injury associated with small bowell overgrowth in rats is prevented by metronidazole and tetracycline. Gastroenterology 1991; 100: 513-9 [PMID: 1985047].
Freund HR. Abnormalities of liver function and hepatic damage associated with total parenteral nutrition. Nutrition 1991; 7(1): 1-5; discussion 5-6 [PMID: 1802177].
Wigg AJ, Roberts-Thomson IC, Dymock RB, McCarthy PJ, Grose RH, Cummings AJ. The role os small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis. Gut 2001; 48: 206-211 [PMID: 11156641].
Bures J, Cyrany J, Kohoutova D, Forstl M, Rejchrt S, Kvetina J, Vorisek V, Kopacova M. Small intestinal bacterial overgrowth syndrome. World J Gastroenterol 2010; 16(24): 2978-90 [PMID: 20572300].
Sajjad A, Mottershead M, Syn WK, Jones R, Smith S, Nwokolo CU. Ciprofloxacin suppresses bacterial overgrowth, increases fasting insulin but does not correct low acylated ghrelin concentration in non-alcoholic steatohepatitis. Alimentary Pharmacology & Therapeutics 2005; 22(4): 291-9 [PMID: 16097995].
Sabate JM, Jouet P, Harnois F, Mechler C, Msika S, Grossin M, Coffin B. High prevalence of small intestinal bacterial overgrowth in patients with morbid obesity: a contributor to severe hepatic steatosis. Obesity Surgery 2008; 18(4): 371-7 [PMID: 18286348].
Miele L, Valenza V, La Torre G, Montalto M, Cammarota G, Ricci R, Masciana R, et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 2009; 49(6): 1877-87 [PMID: 19291785].
Farhadi A, Gundlapalli S, Shaikh M, Frantzides C, Harrell L, Kwasny MM, Keshavarzian A. Susceptibility to gut leakiness: a possible mechanism for endotoxaemia in non-alcoholic steatohepatitis. Liver Int 2008; 28(7): 1026-33 [PMID: 18397235].
Abu-Shanab A, Quigley EM. The role of the gut microbiota in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 2010; 7(12): 691-701 [PMID:21045794].
Nair S, Cope K, Risby TH, Diehl AM. Obesity and female gender increase breath ethanol concentration: potential implications for the pathogenesis of nonalcoholic steato hepatitis. Am J Gastroenterology 2001; 96(4): 1200-04 [PMID: 11316170].
Cope K, Risby T, Diehl AM. Increased gastrointestinal ethanol production in obese mice: imlications for fatty liver disease pathogenesis. Gastroenterology 2000; 119: 1340-7 [PMID: 11054393].
Ghoshal S, Witta J, Zhong J, de Villiers W, Eckhardt E. Chylomicrons promote intestinal absorption of lipopolysaccharides. J Lipid Research 2009; 50(1): 90-97 [PMID: 18815435].
Laugerette F, Vors C, Peretti N, Michalski MC. Complex links between dietary lipids, endogenous endotoxins and metabolic inflammation. Biochimie 2011; 93(1): 39-45 [PMID: 20433893].
Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM, Gibson GR, Delzenne NM. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 2007; 50(11): 2374-83 [PMID: 17823788].
Rivera CA, Adegboyega P, van Rooijen N, Tagalicud A, Allman M, Wallace M. Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis. J Hepatology 2007; 47(4): 571-9 [PMID: 17644211].
Yang SQ, Lin HZ, Lane MD, Clemens M, Diehl AM. Obesity increases sensitivity to endotoxin liver injury: implications for the pathogenesis of steatohepatitis. Proc Natl Acad Sci USA 1997; 94: 2557-62 [PMID: 9122234].
Kudo H, Takahara T, Yata Y, Kawai K, Zhang W, Sugiyama T. Lipopolysaccharide triggered TNF-alpha-induced hepatocyte apoptosis in a murine non-alcoholic steatohepatitis model. J Hepatology 2009; 51(1): 168-75 [PMID: 19446916].
Huang H, Liu T, Rose JL, Stevens RL, Hoyt DG. Sensitivity of mice to lipopolysaccharide is increased by a high saturated fat and cholesterol diet. J Inflammation 2007; 4: 22 [PMID: 17997851].
Thuy S, Ladurner R, Volynets V, Wagner S, Strahl S, Konigsrainer A, Maier KP, et al. Nonalcoholic fatty liver disease in humans is associated with increased plasma endotoxin and plasminogen activator inhibitor 1 concentrations and with fructose intake. J Nutrition 2008; 138(8): 1452-5 [PMID: 18641190].
Harte AL, da Silva NF, Creely SJ, McGee KC, Billyard T, Youssef-Elabd EM, Tripathi G, et al. Elevated endotoxin levels in non-alcoholic fatty liver disease. J Inflammation 2010; 7: 15 [PMID: 20353583].
Ruiz AG, Casafont F, Crespo J, Cayon A, Mayorga M, Estebanez A, Fernadez-Escalante JC, et al. Lipopolysaccharide- binding protein plasma levels and liver TNF-alpha gene expression in obese patients: evidence for the potential role of endotoxin in the pathogenesis of non-alcoholic steatohepatitis. Obesity Surgery 2007; 17(10): 1374-80 [PMID: 18000721].
Verdam FJ, Rensen SS, Driessen A, Greve JW, Buurman WA. Novel evidence for chronic exposure to endotoxin in human nonalcoholic steatohepatitis. J Clinical Gastroenterology 2011; 45(2): 149-52 [PMID: 20661154].
Zeisel SH, Wishnok JS, Blusztajn JK. Formation of methylamines from ingested choline and lecithin. J Pharmacology and Experimental Therapeutics 1983; 225(2): 320-4 [PMID: 6842395].
Lin JK, Ho YS. Hepatotoxicity and hepatocarcinogenicity in rats fed squid with or without exogenous nitrite. Food Chem Toxicol 1992; 30(8): 695-702 [PMID: 1328003].
Dumas ME, Barton RH, Toye A, Cloarec O, Blancher C, Rothwell A, Fearnside J, et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proceedings of the National Academy of Sciences of the United States of America 2006; 103(33): 12511-6 [PMID: 16895997].
Spencer MD, Hamp TJ, Reid RW, Fischer LM, Zeisel SH, Fodor AA. Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology 2011; 140(3): 976-86 [PMID: 21129376].
Martin FP, Wang Y, Sprenger N, Yap IK, Rezzi S, Ramadan Z, Pere-Trepat E, et al. Top-down systems biology integration of conditional prebiotic modulated transgenomic interactions in a humanized microbiome mouse model. Molecular Systems Biology 2008; 4: 205 [PMID: 18628745].
Ouyang X, Cirillo P, Sautin Y, McCall S, Bruchette JL, Diehl AM, Johnson RJ, Abdelmalek MF. Fructose consumption as a risk factor for non-alcoholic fatty liver disease. J Hepatology 2008; 48(6): 993-9 [PMID: 18395287].
Joost HG, Thorens B. The extended GLUT-family of sugar/ polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members (review). Molecular Membrane Biology 2001; 18(4): 247-56 [PMID: 11780753].
Lim JS, Mietus-Snyder M, Valente A, Schwarz JM, Lustig RH. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat Rev Gastroenterol Hepatol 2010; 7(5): 251-64 [PMID: 20368739].
Teff KL, Elliott SS, Tschop M, Kieffer TJ, Rader D, Heiman M, Townsend RR, et al. Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women. J Clinical Endocrinology and Metabolism 2004; 89(6): 2963- 72 [PMID: 15181085].
Jurgens H, Haass W, Castaneda TR, Schurmann A, Koebnick C, Dombrowski F, Otto B, et al. Consuming fructosesweetened beverages increases body adiposity in mice. Obesity Research 2005; 13(7): 1146-56 [PMID: 16076983].
Ackerman Z, Oron-Herman M, Grozovski M, Rosenthal T, Pappo O, Link G, Sela BA. Fructose-induced fatty liver disease: hepatic effects of blood pressure and plasma triglyceride reduction. Hypertension 2005; 45(5): 1012-8 [PMID: 15824194].
Davail S, Rideau N, Bernadet MD, Andre JM, Guy G, Hoo- Paris R. Effects of dietary fructose on liver steatosis in overfed mule ducks. Hormone and Metabolic Research = Hormon- und Stoffwechselforschung = Hormones et Metabolisme 2005; 37(1): 32-5 [PMID: 15702436].
Kohli R, Kirby M, Xanthakos SA, Softic S, Feldstein AE, Saxena V, Tang PH, et al. High-fructose, medium chain trans fat diet induces liver fibrosis and elevates plasma coenzyme Q9 in a novel murine model of obesity and nonalcoholic steatohepatitis. Hepatology 2010; 52(3): 934-44 [PMID: 20607689].
Abdelmalek MF, Suzuki A, Guy C, Unalp-Arida A, Colvin R, Johnson RJ, Diehl AM. Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology 2010; 51(6): 1961-71 [PMID: 20301112].
Nakagawa T, Hu H, Zharikov S, Tuttle KR, Short RA, Glushakova O, Ouyang X, et al. A causal role for uric acid in fructose-induced metabolic syndrome. Am J Physiol Renal Physiol 2006; 290(3): F625-F631 [PMID: 16234313].
Johnson RJ, Segal MS, Sautin Y, Nakagawa T, Feig DI, Kang DH, et al. Potential role of sugar (fructose) in the epide mic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am J Clinical Nutrition 2007; 86(4): 899-906 [PMID: 17921363].
Spruss A, Kanuri G, Wagnerberger S, Haub S, Bischoff SC, Bergheim I. Toll-like receptor 4 is involved in the development of fructose-induced hepatic steatosis in mice. Hepatology 2009; 50(4): 1094-104 [PMID: 19637282].
Bergheim I, Weber S, Vos M, Kramer S, Volynets V, Kaserouni S, McClain CJ, Bischoff SC. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin. J Hepatology 2008; 48(6): 983-92 [PMID: 18395289].
Busserolles J, Gueux E, Rock E, Demigne C, Mazur A, Rayssiguier Y. Oligofructose protects against the hypertriglyceridemic and pro-oxidative effects of a high fructose diet in rats. J Nutrition 2003; 133(6): 1903-8 [PMID: 12771337].
Baraona E, Julkunen R, Tannenbaum L, Lieber CS. Role of intestinal bacterial overgrowth in ethanol production and metabolism in rats. Gastroenterology 1986; 90(1): 103-10 [PMID: 3940238].
Haub S, Kanuri G, Volynets V, Brune T, Bischoff SC, Bergheim I. Serotonin reuptake transporter (SERT) plays a critical role in the onset of fructose-induced hepatic steatosis in mice. Am J Physiol Gastrointest Liver Physiol 2010; 298(3): G335-G344 [PMID: 19713474].
Iacono A, Raso GM, Canani RB, Calignano A, Meli R. Probiotics as an emerging therapeutic strategy to treat NAFLD: focus on molecular and biochemical mechanisms. J Nutritional Biochemistry 2011; 22(8): 699-711 [PMID: 21292470].
Li Z, Yang S, Lin H, Huang J, Watkins PA, Moser AB, Desimone C, et al. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology 2003; 37(2): 343-50 [PMID: 12540784].
Ma X, Hua J, Li Z. Probiotics improve high fat diet-induced hepatic steatosis and insulin resistance by increasing hepatic NKT cells. J Hepatology 2008; 49(5): 821-30 [PMID: 18674841].
Esposito E, Iacono A, Bianco G, Autore G, Cuzzocrea S, Vajro P, Canani RB, et al. Probiotics reduce the inflammatory response induced by a high-fat diet in the liver of young rats. J Nutrition 2009; 139(5): 905-11 [PMID: 19321579].
Velayudham A, Dolganiuc A, Ellis M, Petrasek J, Kodys K, Mandrekar P, Szabo G. VSL#3 probiotic treatment attenuates fibrosis without changes in steatohepatitis in a diet-induced nonalcoholic steatohepatitis model in mice. Hepatology 2009; 49(3): 989-97 [PMID: 19115316].
Fan JG, Xu ZJ, Wang GL. Effect of lactulose on establishment of a rat non-alcoholic steatohepatitis model. World J Gastroenterol 2005; 11(32): 5053-6 [PMID: 16124065].
Delzenne NM, Cani PD, Neyrinck AM. Modulation of glucagon- like peptide 1 and energy metabolism by inulin and oligofructose: experimental data. J Nutrition 2007; 137(11 Suppl.): 2547S-2551S [PMID: 17951500].
Daubioul CA, Horsmans Y, Lambert P, Danse E, Delzenne NM. Effects of oligofructose on glucose and lipid metabolism in patients with nonalcoholic steatohepatitis: results of a pilot study. European J Clinical Nutrition 2005; 59(5): 723-726 [PMID: 15770222].
Daubioul CA, Taper HS, De Wispelaere LD, Delzenne NM. Dietary oligofructose lessens hepatic steatosis, but does not prevent hypertriglyceridemia in obese zucker rats. J Nutrition 2000; 130(5): 1314-9 [PMID: 10801936].
Loguercio C, De Simone T, Federico A, Terracciano F, Tuccillo C, Di Chicco M, Carteni M. Gut-liver axis: a new point of attack to treat chronic liver damage? Am J Gastroenterology 2002; 97(8): 2144-6 [PMID: 12190198].
Loguercio C, Federico A, Tuccillo C, Terracciano F, D’Auria MV, De Simone C, Del Vecchio Blanco C. Beneficial effects of a probiotic VSL#3 on parameters of liver dysfunction in chronic liver diseases. J Clinical Gastroenterology 2005; 39(6): 540-3 [PMID: 15942443].
Lirussi F, Mastropasqua E, Orando S, Orlando R. Probiotics for non-alcoholic fatty liver disease and/or steatohepatitis. Cochrane database of systematic reviews (Online) 2007(1): CD005165 [PMID: 17253543].