2014, Number 4
Next >>
Rev Cubana Estomatol 2014; 51 (4)
Low-level laser irradiation on Candida strains: an in vitro study
Lira De Souza SREA, Medeiros RCA, Rodrigues LFI, Dantas MAC, Chaves VCMH, Queiroga de Castro GD
Language: Portugués
References: 22
Page: 358-365
PDF size: 102.44 Kb.
ABSTRACT
Objective: to evaluate the effect of specific parameters of low-level laser irradiation on strains of
Candida albicans (ATCC 18804),
Candida krusei (ATCC 34135) and
Candida tropicalis (ATCC 13803).
Methods: the inocula of the three Candida species (1.5 x 10
6 microorganisms/ml) were irradiated with a gallium-arsenide (GaAs) infrared laser device (Twinflex Evolution, MMO Electronic Equipment, 660 nm, 0.5 nW) at doses (J/cm
2): 1.2 (10 sec), 3.7 (30 sec),
7.5 (1min) and 15 (2 min). Following irradiation, the inocula were grown on Petri dishes containing Sabouraud Dextrose culture medium and then incubated in bacteriological incubator at 37 °C. After 48 hours, it was quantified the number of colony-forming units (CFU) and data were statistically analyzed using Friedman’s and Wilcoxon’s tests (α = 0.05). All tests were performed in duplicate.
Results: the median values (Q25 - Q75) gathered in the quantification of the strains after laser irradiation at doses (J/cm
2) 1.2, 3.7, 7.5 and 15 were, respectively: 35.23 (9,15-47,64); 6,79 (1,45-6,87); 5,32 (1,39-8,15); 6.10 (1,18-11,86) and 5.13 (0,99-6,25). These results were found to show statistically significant differences according to the dose
administered (p ‹ 0.05). Nevertheless, it was not possible to identify in the post-hoc tests
which group(s) showed significant difference.
Conclusion: low-intensity laser therapy showed inhibitory effect on Candida strains, and
such activity was altered according to the irradiated dose.
REFERENCES
Pinto PM, Weikert-Oliveira RCB, Lyon JP. In vitro antifungal susceptibility of clinical isolates of Candida spp. obtained from patients with different predisposing factors to candidosis. Microbiol Res. 2008;163:579-5.
Dougherty TJ. An update on photodynamic therapy applications. J Clin Laser Med Surg. 2002; 20:3-7.
Souza SC, Junqueira JC, Balducii I, Koga-Ito CY, Munin E, Jorde AOC. Photosensitization of different Candida species by low power laser light. J Photochem Photobiol B. 2006;83(1):34-8.
Garcez AS, Souza, FR, Núñez SC, Kather JM, Ribeiro MS. Terapia Fotodinâmica em Odontologia - Laser de baixa potência para redução microbiana. Rev APCD. 2003;57(3):223-6.
Zanin ICJ, Gonçalves RB, Brugnera Junior A. Susceptibility of Streptococcus mutans biofilms to photodynamic therapy: in vitro study. J Antimicrob Chemother. 2005;56(2):324-30.
Gonçalves L. Efeito de fotoativadores utilizados na irradiação laser intracanal. [Dissertação de Mestrado]. São Paulo: Universidade de São Paulo; 2005.
Maver-Biscanin M, Mravak-Stipetic M, Jerolimov V. Effect of low-level laser therapy on Candida albicans growth in patients with denture stomatitis. Photomed Laser Surg. 2005; 23: 328- 32.
Bevilacqua IM, Brugnera Junior A, Nicolau RA. Ação do laser de baixa potência associado à substâncias fotoativadoras na redução de cândidas em meio bucal (Revisão da literatura). In: IX Encontro Latino Americano de Iniciação Científica e V Encontro Latino Americano de Pós-Graduação: 2011; São José dos Campos. Anais. 2011. p. 1925-8.
Lakatos EM, Marconi MA. Fundamentos da metodologia científica. 6ª. ed. São Paulo: Atlas, 2009.
Clinical and Laboratory Standards Institute. Normas de Desempenho para Testes de Sensibilidade Antimicrobiana: 15º Suplemento Informativo.2005;25(1).
Silva EJNL, Coutinho Filho WP, Andrade AO, Morante DRH, Hirata Junior R, Coutinho Filho TS et al. Efecto antimicrobiano de la terapia fotodinámica sobre Enterococcus faecalis, estudio in vitro. Rev Estomatol Hered. 2011;21(4):185-9.
Diniz DN, Macêdo-Costa, MR, Pereira MSV, Pereira JV, Higimo JS. Efeito antifúngico in vitro do extrato da folha e do caule de Myrciaria cauliflora berg. sobre microrganismos orais. Rev Odontol UNESP. 2010;39(3):151-6.
Scwingel AR, Barcessat ARP, Nunez SC, Ribeiro MS. Antimicrobial Photodynamic Therapy in the Treatment of Oral Candidiasis in HIV-Infected Patients. Photomed Laser Surg.2012;30(8):429-32.
Munin E, Giroldo LM, Alves LP, Costa MS. Study of germ tube formation by Candida albicans after photodynamic antimicrobial chemotherapy (PACT). J Photochem Photobiol B. 2007;88(1):16-20.
Giroldo LM, Felipe MP, Oliveira MA, Munin E, Alves LP, Costa MS. Photodynamic antimicrobial chemotherapy (PACT) with methylene blue increases membrane permeability in Candida albicans. Lasers Med Sci. 2009;24 (1):109-12.
Wilson M, Dobson J, Harvey W. Sensitization of oral bacteria to killing by low-power laser irradiation. Curr Microbiol. 1992;25: 77-81.
Souza RC, Junqueira JC, Rossoni RD, Pereira CA, Munin E, Jorge AOC. Comparison of the photodynamic fungicidal efficacy of methylene blue, toluidine blue, malachite Green and low-power laser irradiation alone against Candida albicans. Lasers Med Sci. 2010;25(3):385–9.
Akpan A, Morgan R. Oral candidiasis. Postgrad Med J. 2002;78(2):455-9.
Junqueira JC, Ribeiro MA, Rossoni RD, Barbosa JO, Querido SMR, Jorge AOC. Photomed Laser Surg. 2010;28 Suppl 1:67-2.
Pupo YM, Gomes GM, Santos EB, Chaves L, Michel MD, Kozlowski VA Jr, Gomes OM, Gomes JC. Susceptibility ofCandida albicans to photodynamic therapy using methylene blue and toluidine blue as photosensitizing dyes. Acta Odontol Latinoam. 2011;24(2):188-92.
Bomfim AR, Coimbra MER, Moliterno LFM. Potencial erosivo dos repositores hidroeletrolíticos sobre o esmalte dentário: revisão de literatura. Rev Bras Odontol. 2001;58:164-8.
Castro RD, Lima EO. Atividade antifúngica in vitro do óleo essencial de Eucalyptus globulus L. sobre Candida spp. Rev Odontol UNESP. 2010;39(3):179-84