2014, Number 2
<< Back Next >>
Ann Hepatol 2014; 13 (2)
Variability of apparent diffusion coefficients in metastatic small cell lung carcinoma: comparisons between-within normal tissue and liver metastases
Roldán-Valadez E, Cortez-Conradis D, Ríos-Hoyo A, Arrieta Ó
Language: English
References: 30
Page: 297-302
PDF size: 250.70 Kb.
ABSTRACT
In recent years, the use of diffusion weighted MRI (DW-MRI) has increased for the diagnosis of focal liver
lesions (FLLs). DW-MRI may help in the differentiation of benign and malignant FLLs by measuring the apparent
diffusion coefficient (ADC) values. Unfortunately, liver metastases present different histopathologic
features with variable MRI signals within each lesion; this histologic variability explains the intra- and interlesion
variations of ADC measurements. We present the case of a 64-year-old female with diagnosis of liver
metastasis from small cell lung carcinoma admitted to the emergency unit due to symptoms of inappropriate
antidiuretic hormone secretion. Quantitative comparison of two liver MRI, on admission and 2-months
after transcatheter arterial chemoembolization showed persistence of the hyperintense metastatic lesions
with significant difference in the ADC values in the with-in metastatic lesions (p = 0.001) and between normal
tissue and liver metastases only at the end of treatment (p ‹ 0.001). Several publications state that DWMRI
is capable to predict the response to chemotherapy in malignant tumors, the histologic variability of
liver metastasis and their response to different treatments is reflected in intra- and inter-lesion variations
of ADC measurements that might delay an accurate imaging diagnosis. We present evidence of this variability,
which might encourage prospective clinical trials that would define better cut-off values, would help
understand the ADC biological behaviour, and would reach consensus about the best acquisition parameters
for this promising quantitative biomarker.
REFERENCES
Rowbotham D, Wendon J, Williams R. Acute liver failure secondary to hepatic infiltration: a single centre experience of 18 cases. Gut 1998; 576-80.
Bernuau J, Rueff B, Benhamou JP. Fulminant and subfulminant liver failure: definitions and causes. Semin Liver Dis 1986; 97-106. Doi: 10.1055/s-2008-1040593.
Miyaaki H, Ichikawa T, Taura N, Yamashima M, Arai H, Obata Y, Furusu A, et al. Diffuse liver metastasis of small cell lung cancer causing marked hepatomegaly and fulminant hepatic failure. Intern Med 2010; 1383-6.
Semelka RC, Martin DR, Balci C, Lance T. Focal liver lesions: comparison of dual-phase CT and multisequence multiplanar MR imaging including dynamic gadolinium enhancement. J Magn Reson Imaging 2001; 397-401.
Reid A, Smith FW, Hutchison JM. Nuclear magnetic resonance imaging and its safety implications: follow-up of 181 patients. Br J Radiol 1982; 784-6.
Terens WL, Gluck R, Golimbu M, Rofsky NM. Use of gadolinium- DTPA-enhanced MRI to characterize renal mass in patient with renal insufficiency. Urology 1992; 152-4.
Parikh T, Drew SJ, Lee VS, Wong S, Hecht EM, Babb JS, Taouli B. Focal liver lesion detection and characterization with diffusion-weighted MR imaging: comparison with standard breath-hold T2-weighted imaging. Radiology 2008; 812-22. Doi: 10.1148/radiol.2463070432.
Naganawa S, Kawai H, Fukatsu H, Sakurai Y, Aoki I, Miura S, Mimura T, et al. Diffusion-weighted imaging of the liver: technical challenges and prospects for the future. Magn Reson Med Sci 2005; 175-86.
Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 1986; 401-7.
Kanematsu M, Goshima S, Watanabe H, Kondo H, Kawada H, Noda Y, Moriyama N. Diffusion/perfusion MR imaging of the liver: practice, challenges, and future. Magn Reson Med Sci 2012; 151-61.
Charles-Edwards EM, deSouza NM. Diffusion-weighted magnetic resonance imaging and its application to cancer. Cancer Imaging 2006: 135-43. Doi: 10.1102/1470- 7330.2006.0021.
Thoeny HC, De Keyzer F. Extracranial applications of diffusion- weighted magnetic resonance imaging. Eur Radiol 2007; 1385-93. Doi: 10.1007/s00330-006-0547-0.
Nasu K, Kuroki Y, Nawano S, Kuroki S, Tsukamoto T, Yamamoto S, Motoori K, et al. Hepatic metastases: diffusionweighted sensitivity-encoding versus SPIO-enhanced MR imaging. Radiology 2006; 122-30. Doi: 10.1148/radiol. 2383041384.
Kele PG, van der Jagt EJ. Diffusion weighted imaging in the liver. World J Gastroenterol 2010; 1567-76.
Kwee TC, Takahara T, Ochiai R, Nievelstein RA, Luijten PR. Diffusion-weighted whole-body imaging with background body signal suppression (DWIBS): features and potential applications in oncology. Eur Radiol 2008; p. 1937-52. Doi: 10.1007/s00330-008-0968-z.
Pedro MS, Semelka RC, Braga L. MR imaging of hepatic metastases. Magn Reson Imaging Clin N Am 2002; 15-29.
Goshima S, Kanematsu M, Kondo H, Yokoyama R, Kajita K, Tsuge Y, Watanabe H, et al. Diffusion-weighted imaging of the liver: optimizing b value for the detection and characterization of benign and malignant hepatic lesions. J Magn Reson Imaging 2008; 691-7. Doi: 10.1002/jmri.21467.
Haider MA, Farhadi FA, Milot L. Hepatic perfusion imaging: concepts and application. Magn Reson Imaging Clin N Am 2010:465-75, x. Doi: 10.1016/j.mric.2010.07.009.
Outwater EK. Imaging of the liver for hepatocellular cancer. Cancer Control 2010; 72-82.
Gourtsoyianni S, Papanikolaou N, Yarmenitis S, Maris T, Karantanas A, Gourtsoyiannis N. Respiratory gated diffusion- weighted imaging of the liver: value of apparent diffusion coefficient measurements in the differentiation between most commonly encountered benign and malignant focal liver lesions. Eur Radiol 2008; 486-92. Doi: 10.1007/s00330-007-0798-4.
Koh DM, Brown G, Riddell AM, Scurr E, Collins DJ, Allen SD, Chau I, et al. Detection of colorectal hepatic metastases using MnDPDP MR imaging and diffusion-weighted imaging (DWI) alone and in combination. Eur Radiol 2008; 903-10. Doi: 10.1007/s00330-007-0847-z.
Taouli B, Koh DM. Diffusion-weighted MR imaging of the liver. Radiology 2010; 47-66. Doi: 10.1148/radiol.09090021.
Bruix J, Sherman M, Practice Guidelines Committee AAft- SoLD. Management of hepatocellular carcinoma. Hepatology 2005; 1208-36. Doi: 10.1002/hep.20933.
Heiken JP, Weyman PJ, Lee JK, Balfe DM, Picus D, Brunt EM, Flye MW. Detection of focal hepatic masses: prospective evaluation with CT, delayed CT, CT during arterial portography, and MR imaging. Radiology 1989; 47-51.
Koh DM, Scurr E, Collins D, Kanber B, Norman A, Leach MO, Husband JE. Predicting response of colorectal hepatic metastasis: value of pretreatment apparent diffusion coefficients. AJR Am J Roentgenol 2007;1001-8. Doi: 10.2214/ AJR.06.0601.
Cui Y, Zhang XP, Sun YS, Tang L, Shen L. Apparent diffusion coefficient: potential imaging biomarker for prediction and early detection of response to chemotherapy in hepatic metastases. Radiology 2008; 894-900. Doi: 10.1148/radiol.2483071407.
Kandpal H, Sharma R, Madhusudhan KS, Kapoor KS. Respiratory- triggered versus breath-hold diffusion-weighted MRI of liver lesions: comparison of image quality and apparent diffusion coefficient values. AJR Am J Roentgenol 2009; 915-22. Doi: 10.2214/AJR.08.1260.
Oner AY, Celik H, Oktar SO, Tali T. Single breath-hold diffusion-weighted MRI of the liver with parallel imaging: initial experience. Clin Radiol 2006; 959-65. Doi: 10.1016/ j.crad.2006.06.014.
Taouli B, Sandberg A, Stemmer A, Parikh T, Wong S, Xu J, Lee VS. Diffusion-weighted imaging of the liver: comparison of navigator triggered and breathhold acquisitions. J Magn Reson Imaging 2009; 561-8. Doi: 10.1002/ jmri.21876.
Nishie A, Tajima T, Asayama Y, Ishigami K, Kakihara D, Nakayama T, Takayama Y, et al. Diagnostic performance of apparent diffusion coefficient for predicting histological grade of hepatocellular carcinoma. Eur J Radiol 2011: e29-33. Doi: 10.1016/j.ejrad.2010.06.019.