2014, Number 2
<< Back Next >>
Ann Hepatol 2014; 13 (2)
Anti-cancer effects of blue-green alga Spirulina platensis, a natural source of bilirubin-like tetrapyrrolic compounds
Konícková R, Vanková K, Vaníková J, Vánová K, Muchová L, Subhanová I, Zadinová M, Zelenka J, Dvorák A, Kolár M, Strnad H, Rimpelová S, Ruml T, Wong RJ, Vítek L
Language: English
References: 43
Page: 273-283
PDF size: 299.41 Kb.
ABSTRACT
Spirulina platensis is a blue-green alga used as a dietary supplement because of its hypocholesterolemic
properties. Among other bioactive substances, it is also rich in tetrapyrrolic compounds closely related to
bilirubin molecule, a potent antioxidant and anti-proliferative agent. The aim of our study was to evaluate
possible anticancer effects of
S. platensis and
S. platensis-derived tetrapyrroles using an experimental model of pancreatic cancer. The anti-proliferative effects of
S. platensis and its tetrapyrrolic components [phycocyanobilin (PCB) and chlorophyllin, a surrogate molecule for chlorophyll A] were tested on several human pancreatic cancer cell lines and xenotransplanted nude mice. The effects of experimental therapeutics on mitochondrial reactive oxygen species (ROS) production and glutathione redox status were also evaluated. Compared to untreated cells, experimental therapeutics significantly decreased proliferation of human pancreatic cancer cell lines
in vitro in a dose-dependent manner (from 0.16 g·L-1 [
S. platensis], 60 µM [PCB], and 125 µM [chlorophyllin], p ‹ 0.05). The anti-proliferative effects of
S. platensis were also shown
in vivo, where inhibition of pancreatic cancer growth was evidenced since the third day of treatment (p ‹ 0.05). All tested compounds decreased generation of mitochondrial ROS and glutathione
redox status (p = 0.0006; 0.016; and 0.006 for
S. platensis, PCB, and chlorophyllin, respectively). In conclusion,
S. platensis and its tetrapyrrolic components substantially decreased the proliferation of experimental pancreatic cancer. These data support a chemopreventive role of this edible alga. Furthermore, it seems that dietary supplementation with this alga might enhance systemic pool of tetrapyrroles, known to be
higher in subjects with Gilbert syndrome.
REFERENCES
Dillon JC, Phuc AP, Dubacq JP. Nutritional value of the alga Spirulina. World Rev Nutr Diet 1995; 77: 32-46.
Gershwin ME, Belay A. Spirulina in human nutrition and health. Boca Raton: CRC Press; 2008.
Padyana AK, Bhat VB, Madyastha KM, Rajashankar KR, Ramakumar S. Crystal structure of a light-harvesting protein C-phycocyanin from Spirulina platensis. Biochem Biophys Res Commun 2001; 282: 893-8.
Novotny L, Vitek L. Inverse relationship between serum bilirubin and atherosclerosis in men: a meta-analysis of published studies. Exp Biol Med 2003; 228: 568-71.
Jiraskova A, Novotny J, Novotny L, Vodicka P, Pardini B, Naccarati A, Schwertner HA, et al. Association of serum bilirubin and promoter variations in HMOX1 and UGT1A1 genes with sporadic colorectal cancer. Int J Cancer 2012; 131: 1549-55.
Vitek L, Muchova L, Jancova E, Pešicková S, Tegzová D, Peterová V, Pavelka K, et al. Association of systemic lupus erythematosus with low serum bilirubin levels. Scand J Rheumatol 2010; 39: 480-4.
Zucker SD, Horn PS, Sherman KE. Serum bilirubin levels in the US population: Gender effect and inverse correlation with colorectal cancer. Hepatology 2004; 40: 827-35.
McCarty MF. «Iatrogenic Gilbert syndrome»-a strategy for reducing vascular and cancer risk by increasing plasma unconjugated bilirubin. Med Hypotheses 2007; 69: 974-94.
Malik SG, Irwanto KA, Ostrow JD, Tiribelli C. Effect of bilirubin on cytochrome c oxidase activity of mitochondria from mouse brain and liver. BMC Res Notes 2010;3: 162.
Rodrigues CM, Sola S, Brites D. Bilirubin induces apoptosis via the mitochondrial pathway in developing rat brain neurons. Hepatology 2002; 35: 1186-95.
Rodrigues CM, Sola S, Brito MA, Brites D, Moura JJ. Bilirubin directly disrupts membrane lipid polarity and fluidity, protein order, and redox status in rat mitochondria. J Hepatol 2002; 36: 335-41.
Lanone S, Bloc S, Foresti R, Almolki A, Taillé C, Callebert J, Conti M, et al. Bilirubin decreases nos2 expression via inhibition of NAD(P)H oxidase: implications for protection against endotoxic shock in rats. FASEB J 2005; 19: 1890-2.
Zheng J, Inoguchi T, Sasaki S, et al. Phycocyanin and phycocyanobilin from Spirulina platensis protect against diabetic nephropathy by inhibiting oxidative stress. Am J Physiol Regul Integr Comp Physiol 2013; 304: R110-R120.
Was H, Dulak J, Jozkowicz A. Heme oxygenase-1 in tumor biology and therapy. Curr Drug Targets 2010; 11: 1551-70.
Drummond GS, Kappas A. Prevention of neonatal hyperbilirubinemia by tin protoporphyrin IX, a potent competitive inhibitor of heme oxidation. Proc Natl Acad Sci USA 1981; 78: 6466-70.
Hayatsu H, Negishi T, Arimoto S, Hayatsu T. Porphyrins as potential inhibitors against exposure to carcinogens and mutagens. Mutat Res 1993; 290: 79-85.
Kumar SS, Devasagayam TP, Bhushan B, Verma NC. Scavenging of reactive oxygen species by chlorophyllin: an ESR study. Free Radic Res 2001; 35: 563-74.
Antico Arciuch VG, Elguero ME, Poderoso JJ, Carreras MC. Mitochondrial regulation of cell cycle and proliferation. Antioxid Redox Signal 2012; 16: 1150-80.
Terry MJ, Maines MD, Lagarias JC. Inactivation of phytochrome- and phycobiliprotein-chromophore precursors by rat liver biliverdin reductase. J Biol Chem 1993; 268: 26099-106.
Iuliano L, Piccheri C, Coppola I, Pratico D, Micheletta F, Violi F. Fluorescence quenching of dipyridamole associated to peroxyl radical scavenging: a versatile probe to measure the chain breaking antioxidant activity of biomolecules. Biochim Biophys Acta 2000; 1474: 177-82.
Vreman HJ, Stevenson DK. Heme oxygenase activity as measured by carbon monoxide production. Anal Biochem 1988; 168: 31-8.
Maeso N, Garcia-Martinez D, Ruperez FJ, Cifuentes A, Barbas C. Capillary electrophoresis of glutathione to monitor oxidative stress and response to antioxidant treatments in an animal model. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 822: 61-9. Doi: 10.1016/ j.jchromb.2005.05.015.
McKeage MJ, Kelland LR, Boxall FE, Valenti MR, Jones M, Goddard PM, Gwynne J, et al. Schedule dependency of orally administered bis-acetato-ammine-dichloro-cyclohexylamineplatinum( IV) (JM216) in vivo. Cancer Res 1994; 54: 4118-22.
Vitek L, Schwertner HA. The heme catabolic pathway and its protective effects on oxidative stress-mediated diseases. Adv Clin Chem 2007; 43: 1-57.
Jezek P, Hlavata L. Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int J Biochem Cell Biol 2005; 37: 2478-503.
Du J, Liu J, Smith BJ, Tsao MS, Cullen JJ. Role of Rac1- dependent NADPH oxidase in the growth of pancreatic cancer. Cancer Gene Ther 2011; 18: 135-43. Doi: 10.1038/ cgt.2010.64.
Teufelhofer O, Parzefall W, Kainzbauer E, Ferk F, Freiler C, Knasmüller S, Elbling L, et al. Superoxide generation from Kupffer cells contributes to hepatocarcinogenesis: studies on NADPH oxidase knockout mice. Carcinogenesis 2005; 26: 319-29.
Keshavan P, Schwemberger SJ, Smith DLH, Babcock GF, Zucker SD. Unconjugated bilirubin induces apoptosis in colon cancer cells by triggering mitochondrial depolarization. Int J Canc 2004; 112: 433-45.
Ollinger R, Kogler P, Troppmair J, Hermann M, Wurm M, Drasche A, Königsrainer I, et al. Bilirubin inhibits tumor cell growth via activation of ERK. Cell Cycle 2007; 6: 3078-85.
Hansen TW, Mathiesen SB, Walaas SI. Bilirubin has widespread inhibitory effects on protein phosphorylation. Pediatr Res 1996; 39: 1072-77.
Horsfall LJ, Rait G, Walters K, Swallow DM, Pereira SP, Nazareth I, Petersen I. Serum bilirubin and risk of respiratory disease and death. JAMA 2011; 305: 691-7.
Nakamura H, Uetani Y, Komura M, Takada S, Sano K, Matsuo T. Inhibitory action of bilirubin on superoxide production by polymorphonuclear leukocytes. Biol Neonate 1987; 52: 273-8.
Noir BA, Boveris A, Garaza Pereira AM, Stoppani AO. Bilirubin: a multi-site inhibitor of mitochondrial respiration. FEBS Lett 1972; 27: 270-4.
Boloor KK, Kamat JP, Devasagayam TP. Chlorophyllin as a protector of mitochondrial membranes against gammaradiation and photosensitization. Toxicology 2000; 155: 63-71.
Boya P, Andreau K, Poncet D, Zamzami N, Perfettini JL, Metivier D, Ojcius DM, et al. Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion. J Exp Med 2003; 197: 1323-34.
Arstila AU, Trump BF. Studies on cellular autophagocytosis. The formation of autophagic vacuoles in the liver after glucagon administration. Am J Pathol 1968; 53: 687-733.
Rodriguez ME, Kim J, Delos Santos GB, Azizuddin K, Berlin J, Anderson VE, Kenney ME, et al. Binding to and photo-oxidation of cardiolipin by the phthalocyanine photosensitizer Pc 4. J Biomed Opt 2010; 15: 051604.
Fujii M, Inoguchi T, Sasaki S, Maeda Y, Zheng J, Kobayashi K, Takayanagi R. Bilirubin and biliverdin protect rodents against diabetic nephropathy by downregulating NAD(P)H oxidase. Kidney Int 2010; 78: 905-19.
Nazarewicz RR, Dikalova A, Bikineyeva A, Ivanov S, Kirilyuk IA, Grigor’ev IA, Dikalov SI. Does scavenging of mitochondrial superoxide attenuate cancer prosurvival signaling pathways? Antioxid Redox Signal 2013; 19: 344-9.
Perchellet JP, Perchellet EM, Orten DK, Schneider BA. Decreased ratio of reduced/oxidized glutathione in mouse epidermal cells treated with tumor promoters. Carcinogenesis 1986; 7: 503-6.
Sedlak TW, Saleh M, Higginson DS, Paul BD, Juluri KR, Snyder SH. Bilirubin and glutathione have complementary antioxidant and cytoprotective roles. Proc Natl Acad Sci USA 2009; 106: 5171-6.
Ouhtit A, Ismail MF, Osman A, Fernando A, Abdraboh ME, El-Kott AF, Azab YA, et al. Chemoprevention of rat mammary carcinogenesis by Spirulina. Am J Pathol 2013. Doi: 10.1016/j.ajpath.2013.10.025 [Epub ahead of print].
Dekker D, Dorresteijn MJ, Pijnenburg M, Heemskerk S, Rasing- Hoogveld A, Burger DM, Wagener FA, et al. The bilirubin- increasing drug atazanavir improves endothelial function in patients with type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol 2011; 31: 458-63.